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1 Exercise sheet No. 1 - 25-04-2019

A symplectic manifold is a pair (M,w) where M is a differentiable manifold and
w € Q*(M) is a 2-form that is closed and nondegenerate.
The following lemma will be used in the solution of exercises 1.1 and 1.2.

Lemma 1. Let (V,w) be a finite dimensional symplectic vector space (i.e. w is a 2-form
on V that is nondegenerate). Then there exists a basis of V', (uq, ..., Up, V1, ..., Uy) Such

that if (u', ... u™ vl

Proof:

..., ") is the associated dual basis of V*, then w = Y1 u’ Av'.

1. There exist uy, vy € V such that w(uy,v;) = 1 and uy, vy are linearly independent.

Proof:

1.1. Let u; € V\{0}.
1.2. There exists v; € V' such that w(uy,v;) = 1.

Proof: Since u; # 0, w is nondegenerate, and we can make w(uj,v;) = 1 by

rescaling.

1.3. uq, vy are linearly independent.

Proof: If uy, v, were linearly dependent, w(uy,v;) = 0.

2. fuy, ... U, vy, ..., 0, € V are such that
. VZ,j = 1, e, W(UZ‘,U]') = 0, w(vi,vj) = O, w(ui,vj) = 61’]’7
¢ Upy.wnyUp,V1,... 0y, is a linearly independent set,

e dimV > 2m,

then there exist U411, Uma1 such that

e Vi,j=1,....m+1: w(w,u;) =0, w(v,v;) =0, w(u;,vj) = dj,

© Upy.wwyUpil, V1, --.,Unme 1S a linearly independent set.
Proof:
2.1. Let
W = span {u, ..., Up,V1,...,0m}

22.V=WaoWe.

Proof:

W¢ ={ueV |VYveW:w(l,v)=0}.

221. V=W + W%,

Proof:

2.2.1.1. Tt suffices to assume that v € V and prove that there exist w € W,

w® € W% such that v = w + w>.

2.2.1.2. Let w=>", wv,v;)u; — w(v,u;)v; € W.
2.2.1.3. Let w* = v —w. Then w* € W¥.

Proof: Tt suffices to assume that u € W, and prove that w(w“, u) =
0. There exist aq,...,am,b1,...,b, € R such that
m

u = Z a;u; + b;v;.
i=1



ww®,u) =w(v —w,u)

=w(v,u) —w(w,u)

-0,
where the last step follows from expanding w,u in a basis and
using equations w(u;, u;) = 0, w(v;,vj) = 0, w(u;, vj) = d;j.

2.2.2. WNW = {0},

Proof: 1t suffices to assume that v € W, u € W% and show that u = 0.
Since u € W, Vv € W¥: w(u,v) = 0. Since u € W¥, Vv € W: w(u,v) = 0.
The result follows from step 2.2.1 and nondegeneracy of w.

2.3. W% is nonempty. Let u,,.1 € W¥.
Proof: dim V' > 2m implies that dim W > 0.
2.4. There exists v,,11 € W* such that w(um11, Vmy1) = 1.

Proof:
2.4.1. There exists v € V such that w(um,11,v) = 1.

Proof: w is nondegenerate and wu,, 1 # 0.
2.4.2. There exist w € W, w* € WY such that v = w + w*.
Proof: Step 2.2.

2.4.3. Upy1 = w” is as desired.

Proof:
1 = w(umy1,v)
= W(Umt1, W) + W(Upy1, W)
= W(Upy1, wY).
2.5, Uy, ..o, Uma1, V1, - - - Uyt 1S & linearly independent set.
Proof: uy, ..., Upm,v1,...,0, is a basis of W, w11, vna1 is a linearly independent
set in W¢, and V =W @& Wv.

3. Q.E.D.

Proof: Start with uq, v from step 1. Apply step 2 many times until its no longer true
that dim V' > 2m (this eventually happens because V' is finite dimensional). The set
that we end up with is the desired basis. O

Exercise 1.1. Show that every symplectic manifold is even dimensional.

Solution: Let p € M. dim M = dimT,M, (T,M,w,) is a symplectic vector space, and
Lemma 1. n

Exercise 1.2. Show that if (M, w) is a 2n-dimensional symplectic manifold, then w” is
a volume form on M.

Solution:
1. It suffices to assume that p € M, and prove that w”|, # 0.

2. There exists a basis (u1, ..., U, v1,...,0,) of T,M such that w, = >, u’ Av', where
(ul, ... u™ vt ... v") is the basis of Ty M dual to (uy, ..., up,v1,...,0,) of T,M.
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Proof: (T,M,w,) is a symplectic vector space, and Lemma 1.

3. W, =nlut AvEA AUt AU

Proof:
Wy =wp A Aw,
= W' Av - ut AT
At Avt 4 U AT
AU Aot ut AT
=nlut AvEA AU AU
4. QED.
Proof: u* Avt A Au™ Av™ # 0. O

Exercise 1.3. Let N be a differentiable manifold and consider its cotangent bundle
m: T*N — N. Consider the 1-form A on T*N that is given as follows: at e € T*N,
Ae = m*e. Show that w = d\ is a symplectic form on T*N.

Solution:
1. w is closed.

Proof: w is exact.

2. w is nondegenerate.

Proof:
2.1. For each coordinate neighborhood (U, ¢y, ..., q,) in N, define functions
pi: T°U — R
as follows. If e € T*U C T*N, e = Y21 pi(€)dqi|(e)- Then,

(T*U,q1, - Gns D1y -+ Pn)
are coordinate neighborhoods in 7*N and all such neighborhoods form an atlas
for T*N.

2.2. In canonical coordinates of 7*N, A is given by A = > | p;dg;.

Proof: Tt suffices to assume that e € T*N and prove that A = > pi(e)dgi|e-
c=T"e

=7 sz(e)d%|7r(e)
=1
=Y pie)d(giom)le
=1
= Zpl(e)d%le
=1

2.3. In canonical coordinates of T*N, w is given by w = >, dp; A dg;.
Proof:
w=d\
=d Z pidg;

=1



= dei A dg;.

=1

2.4. Q.ED.

Proof: It suffices to assume that £ = Y1 | w7 aq + Vg ap € T.(T*N) is such that
w(&, ) =0, and prove that £ = 0.
0= W(f, )

= Z dpi(§)dq; — dg;(&)dp;

= Z vidg; — uidp;.

i=1
Since the dp;, dq; are linearly independent, this implies that all the wu;, v; are 0,
and so £ = 0. O]

Let f € C*(M,R). Since w is nondegenerate, there exists a unique vector field Xy
in M such that w(Xy,-) = —df. This vector field is called the Hamiltonian vector
field of f. Let ¢} == gbg(f : M — M denote the flow of X;.

Exercise 1.4. Show that for all x € M, f(gb‘}(a:)) is independent of .
Solution: It suffices to assume that x € M and prove that for all ¢
*f (63 (x)) =

9 F(0(a)) = df(} () 5 64(a) |
= df(¢§c(x))Xf(¢f( ) [def. of flow of a vector field]
= w(X (¢ (x)), Xp(¢%(x))) [def. of Hamiltonian vector field]
—0 [

chain rule]

w is a form]. O
Exercise 1.5. Show that

(i) Lx,w=0;

(ii) (¢%)'w = w for all ¢.

Solution:
L. (i)
Proof:
Lx,w= Ldew +dix,w [Cartan’s magic formulal
= dix,w [w is closed]
=—d’f [definition of X]
=0.
2. (ii)
Proof:
2.1. It suffices to show that for all ¢,
d 1\ *
%(st) w=20



Proof: If 4 5 (0%)*w =0, then (¢})*w does not depend on ¢ and
(qb})*w = (qb?c)*w =idyw=w.

2.2. Q.ED.
Proof:
%(qﬁ'})*w = (¢})"Lx,w [def. of Lie derivative and properties of the flow]
= (¢4)70
= 0. [

Let f,g € C*°(M,R). The Poisson bracket of f and g, denoted {f, g}, is a function
on M defined by {f, g} = w(Xy, X,).
The following lemma will be used in the solution of exercises 1.6 and 1.7.

Lemma 2. Let f,g € C*°(M,R). Then,
(i) {f. 9} =X;-9;
(i) [Xy, Xl = Xipgy-

Proof:
L A{f.g}=X;s-9
Proof:

{f.9} = w(Xy, Xy)
= —w(Xg, Xy)
= dg(Xy)
= X¢-g.

2. [ X5, Xg] = Xiggy-
Proof: By nondegeneracy of w, it suffices to show that w([X, Xy],-) = w(X(sg,-)-

w(Xirgy:s) = —d{ f,g}) [def. of Hamiltonian vector field]
= —d(Xy - g) [Step 1]
= —d(dg(Xy))
= —duix,dg
= —(dix, + 1x,d)dg d*> = 0]
= Lxtx,w Cartan’s magic formula and def. of X ]

[
[
= Ly, X,W — LX, Lx,w [Lie derivative of forms formula]
=w([Xr, X,],-) [Exercise 1.5 (i)]. O

Exercise 1.6. Show that C*°(M,R) equipped with the Poisson bracket {-,-} is a Lie
algebra.

Solution:
1. {-,-} is antisymmetric.
Proof: 1t suffices to assume that f,g € C*°(M,R) and prove that {f, g} = {g, f}.
{f.9} = w(Xy, Xy)
= —w(Xgy, Xy)

7



2. {-,-} is bilinear.

Proof: By antisymmetry, it suffices to assume that a,b € R, f,g,h € C>*°(M,R) and
prove that

{af +bg,h} =a{f h} +b{g,h}.
{af +bg.h} = w(Xaftug, Xn)
=w(aXy+bX,, Xp) [The map f —— X/ is linear]
= aw(Xys, Xp) + bw(X,y, Xp)
=a{f,h}+b{g,h}.
3. {-, -} satisfies the Jacobi identity.

Proof: 1t suffices to assume that f,g,h € C*°(M,R), and prove that

{f {91}y +{9.{h, [}} +{nAf . g}} = 0.
{f g, n}} +{g.{h, f}} +{n.{f . 9}}

= {f7 {97 h}} - {97 {f? h}} - {{f7 g} ) h} [antisymmetIY]
=X;-(Xyg-h) =Xy (Xp-h) = X(pgpn [Lemma 2 (i)]

= (X, X,] = X(py) - B
=0 [Lemma 2 (ii)]. O

Exercise 1.7. Show that the map

C*(M,R) — X(M)
fr— Xy

is a Lie algebra homomorphism.

Solution: The map is linear and by Lemma 2 it preserves the bracket. [



2 Exercise sheet No. 2 - 02-05-2019

In these exercises we show that the space of almost complex structures that are compat-
ible with a symplectic form is contractible. Our proof is based on the one presented in

[MS17].

Let (V,w) be a symplectic vector space. Let Met(V') denote the set of inner products
on V. Define

w:V—V"
u— wu, ),

and for each g € Met(V') define

For each J € J(V,w) let g; == w(-, J-).
Define a map

A: Met(V) — Aut(V)
g— A, =(9) 'o.
Lemma 3.
(i) Vg € Met(V): the g-adjoint of A, is —Ay;
(ii) Vg € Met(V): Py == A} A, is g-self adjoint and g-positive definite.
Proof:
1. (i)
Proof: 1t suffices to assume that u,v € V' and prove that g(Ayu,v) = g(u, Ayv).
9(Agu,v) = go Ag(u)(v)  [Def. of g]
= &(u)(v) [Def. of A,]
—w(v)(u) [w is antisymmetric]
—goAy(v)(u) [Def. of Ay
[
[

= —g(Ayv,u) Def. of g]
= g(u, —Ayv) g is symmetric]|.
2. (ii)
Proof:
2.1. It suffices to assume that u,v € V and prove that g(P,u,v) = g(u, P,v) and
g(Pgu7 U) Z 0.
2.2. g(Pyu,v) = g(u, Pyv).
Proof:
g(Pyu,v) = g(—Azu,v) [Def. of P,
= g(Agu, Agv) [(i)]
= g(u, —Agv)  [(i)]
= g(u, Pv) [Def. of P,



2.3. g(Pyu,u) > 0.

Proof:
9(Pyu,u) = g(—AZu,u)  [Def. of Py

= 9(Agu, Agu)  [(i)]
>0 [g is positive definite]. O

Exercise 2.1. Show that there exists a unique map
Q: Met(V) — Aut(V)
gr— @y
such that for all g € Met(V)
(i) Qg is g-self adjoint: Vu,v € V': g(Quu,v) = g(u, Qqv);
(ii) Qg is g-positive definite: Yu € V': g(Qqu,u) > 0;
(i) Q2 = —A2.

Solution:
1. Uniqueness.

Proof: P, is g-positive definite, (), is g-positive definite, and Qf] = Py, so Qg is the
g-square root of P,.

2. Existence.

Proof:

2.1. There exists a g-orthonormal basis of V', {v1, ..., v9,}, such that with respect to
this basis P, = diag(\1,. .., Aa,), where Vi =1,...,2n: \; > 0.
Proof-

2.1.1. There exists a g-orthonormal basis of V', {vq,...,va,}, such that with
respect to this basis P, = diag(Aq, ..., Ae,), where Vi =1,...,2n: \; € R.

Proof: P is g-self adjoint and the spectral theorem.
21.2. Vi=1,....2n: \; > 0.
Proof: P, is g-positive definite.
2.2. Let Q, be given in the basis {v1,...,vs,} by Q, = diag(v/A1, ..., vV A2)-
2.3. (i)

Proof: Because of the matrix representation of @),.

2.4. (ii)
Proof: Because of the matrix representation of ().
2.5. (iii)
Proof: Qf] =P, = —A;. O]

Exercise 2.2. Show that
(1) Qgo Ay = Ay0Qy;

10



(ii) J, = Q;lAg eIV, g) NI (V,w);

(iii) If g is w-compatible then g = g;, and J, = ()~ o @;
(iv) If J is w-compatible then J = J,.

Solution:
1. There exists a g-orthonormal basis of V', {vy, ..., vs,}, such that with respect to this

basis P, = diag(A1, ..., Aa), Qg = diag(v/A1, ...,V Az,), where Vi = 1,...,2n: \; >
0.

2. (i)

Proof:

2.1. (QA)i; = VNidy, (AQ)y; = Aij\/ N, (@A) = Ny, (AQ%)y = Ay,
Proof: Qi = Xidyj.

2.2. NAi; = A
Proof: Q*A = —A? = AQ? and the equations from step 2.1.

2.3. It suffices to show that \/)\_iAZ-j = Aijr\/ A
Proof: Equations from step 2.1.

2.4. VN A = A\

Proof-
2.4.1. Case A;; = 0.

2.4.2. Case A;; # 0.

Proof:
NiAij = Aijhj = N = A
— \/A:Aij = Aij\/)Tj.
3. (ii)
Proof:
3.1. J, = Qg_lAg is an almost complex structure on V.
Proof:
Jo=(Q,Ay)* [Def. of J,]
= Q;IAgleAg

= Q;ng_lA; [Exercise 2.1 (i)]
=-Q,'Q,'Q} [Exercise 2.1 (iii)]
= —id

32. J,e IV, g).

Proof:
J*g

9(Q, Ay, Q, Agr)  [Def. of J]

11



9(Ag, Q' Q.M Ay)
—9(, 4,Q,"Qy Ay)
= —g(, leQ;1A9A9'>
9(,Q,'Q, Q%)

Qy = Qq, 50 (Qg1)" = Qg
Lemma 3 (i)]

Exercise 2.2 (i)]

Exercise 2.1 (i)]

[
[
[
[

I
<

3.3. J, € J(V,w).

Proof:
3.3.1. w(-, J,-) is bilinear.

3.3.2. w(-, Jy) is symmetric.
Proof: It suffices to assume that u,v € V and prove that w(u, J,v) =

w(v, Jyu).
w(u, Jyv) = g(QgJyu, Jyu) [Def. of Ay and of J]
= g(Jyu,Q,Jyv) [Exercise 2.1 (i)]
9(QgJyv, Jyu) [g is symmetric]
= w(v, Jyu) [Def. of A, and of J,].

3.3.3. w(-, J,) is positive definite.
Proof: It suffices to assume that v € V' and prove that w(u, Jyu) > 0.
w(u, Jyu) = g(QyJyu, Jyu) [Def. of A, and of Jy
>0 [Exercise 2.1 (ii)]

4. (iii)
Proof:
w and g are compatible

= A, = (§)"" 0@ is an almost complex structure [def. of w, g comp.]

[
— A2 =—id [def. of a.c.s.]
= @, =1id [uniqueness of Q)]
= J, =4, [def. of J,]
= g=w(,A4;) =w(, Jy) =g [def. of A, gs].
5. (iv)
Proof:

J is w-compatible
= g; =w(,J") is
— 7= (@) "o
= J=J, [(iii) + g, w cpt.]. O

a metric which is compatible with w [def. of J, w comp.]

is
w

Let m: E — M be a vector bundle with symplectic structure w. We will show
that J(F,w) has the same homotopy type as 9et(F) and that Met(E) is contractible.
Consider the following maps:

12



O: J(E,w) — Met(F)
J — g5 = w<'7 ’])7

U: Met(F) — J(E,w)
g Jg.
(Here the definitions are fiberwise, i.e. for example ®(p — J,) = (p— g1,)).
Exercise 2.3. Show that
(i) ® o ¥ is homotopic to the identity;
(i) ¥od = id.

Solution:
1. (i)
Proof: For each g, ® o ¥(g) = g;,. The map
[0, 1] x 9Met(E) — Met(F)

(t,9) — tg + (1 —t)gy,
is a homotopy.

2. (ii)
Proof: 1t suffices to assume that J € J(E,w) and prove that W o ®&(J) = J.
Wod(J) = J,,
=J  [Exercise 2.2 (iv)]. O

Exercise 2.4. Show that
(i) Mtet(E) is nonempty;
(ii) 9Met(E) is contractible.

Solution:

1. (i)
Proof: Let (Uy, ¢po: 71 (Uy) — U, x R?™), be a collection of trivializing charts for
E that cover M. Let g, € Met(7(U,)) be the metrics on 7~ !(U,,) defined from the
Euclidean inner product using the trivialization. Let (p,), be a partition of unity
subordinate to (U,)s. Then

90 = Pafa € Met(E).
2. (ii)
Proof: Let gy be an element of Met(£). The map
[0,1] x Met(E) — Met(E)

(t,9) — tg + (1 —t)go
is a homotopy. O]

13



3 Exercise sheet No. 3 - 09-05-2019

In these exercises we are going to prove the following important theorem from symplectic
geometry:

Theorem (Darboux). Let (M,w) be a symplectic manifold and p € M. Then, there
exists a coordinate neighborhood (U, q1, ..., qn,D1,---,Pn) of D such that

w = Z dp; N\ dg;.
i=1

Proof sketch: Passing to coordinate neighborhoods, it suffices to assume that wg = wegq
and w; are forms in R?" and to prove that there exists a diffeomorphism ¢ such that
@*wy = wy. We interpolate between w; and wy,
wy =tw; + (1 —t)wo, t€10,1],
and try to find a family ¢, such that ¢jw; = wg. Denote by X; the (time dependent)
flow of ¢;. Such a family will necessarily Csiautisfy
0= %gzﬁ: Wy
= ¢:Ltht + ¢;fkwt
= 0 = dux,w; + Wr.
Since the statement is something local we may make w; exact: w; = dA;. Let \;, =
tA1 + (1 —t)Xg. Then, .
d(tx,we + A) = 0.
This computation is known as the Moser trick, and explains why we will try to find ¢,
as being the flow of the vector field X; defined by
Lx, W + );t =0. [

Exercise 3.1. Let wy denote the standard symplectic structure of R?". Show that to
prove the theorem it suffices to assume that V' C R?" is a contractible neighborhood of
0, w; € Q2(V) is symplectic and wy |y = wolo, and prove that there exist Uy, U; C V open
and ¢: Uy — U; a diffeomorphism such that ¢*w; = wy.

Solution: Let U be a coordinate neighborhood of p and ¢: U — V" its corresponding
diffeomorphism. Composing 1) with a translation we may assume that 0 € V’. There
exists a basis of R*" such that (¢~!)*wly is the canonical symplectic form when written
with respect to this basis. So we conclude that there exists a linear map
T:R*™ — R*"
such that ((T" o ¢) ")*w|o = wplo. Shrinking V' = T (V') we may assume that it is con-
tractible. By hypothesis there exist Uy, U; C V open and ¢: Uy — U a diffeomorphism
such that ¢*((T' o ¢)™')*w = wp. Then
proTor: (¢t oToyp) HUy) — Uy
is the desired coordinate neighborhood in Darboux’s theorem. O]

Assume then the hypothesis of Exercise 3.1.

Exercise 3.2. Define w; == tw; + (1 — t)wy € Q*(V) for ¢ € [0,1]. Show that

(i) wilo = wolo;

14



(ii) Possibly after shrinking V', w; is symplectic;

(iii) There exists A; € Q' (V) such that d\; = w; and \i|o = Aolo, where Ay denotes the
canonical symplectic potential;

(iv) dA\y = wy, where Ay :=tA; + (1 — ) Ap.

Solution:
1. (i)
Proof:
wilo = twi]o + (1 — t)wolo
= twolo + (1 — t)wolo
= wplo-
2. (i)
Proof:
2.1. w; is closed.
Proof:

dw; = tdwy + (1 — t)dwy
= 0.
2.2. Possibly after shrinking V', w; is nondegenerate.

Proof: Represent w; by a matrix and consider its determinant det(w;): V — R.
Since wilp = wplo, det(w;)(0) # 0. Since this is a continuous function, we can
shrink V' such that det(w;) # 0 on V. Therefore, w; is nondegenerate.

3. (iii)
Proof: Since V is contractible, there exists \; € Q'(V) such that d\| = w;. A\ =
A] + (Moo — Allo) is the desired form.
4. (iv)
Proof:
d\ = tdA\ + (1 —t)d)g
= t(,dl —|— (1 — t)(JJO
—= Wt‘ D

Exercise 3.3. For each t € [0,1], let X, € (V) be such that w,(X,,-) = —\;. Show
that

(i) X; is smooth in ¢;

(ii) There exists Uy C V open and a l-parameter family ¢,: Uy — V' of diffeomor-
phisms in the image such (for ¢ € [0,1]) that for all p € Uy, ¢o(p) = p and

Lon(p) = Xi(de(p)).

Solution:
1. (i)

Proof: Because w; and \; are smooth in t.
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2. (ii)
Proof: Equations ¢y, = id and %qﬁt = X, 0 ¢; uniquely determine ¢, as being the (time
dependent) flow of X;. It remains to be shown that for some Uy C V, the flow exists

for t € [0, 1]. Since \¢|p = 0, then Xt|0 = 0 and X;|o = 0. So for some Uy small enough
neighborhood of 0 the statement is true. O

Exercise 3.4. Show that Uy, Uy := ¢1(Uy) and ¢ = ¢; are as desired.

Solution: We need to show that ¢jw; = wy. It suffices to show that ¢jw; = wy for all
t € 0,1]. For this, we show that £¢Fw, = 0.

d d q
gﬁf wy = ¢; Lx,wi + ¢f s [Leibniz’s rule]

= ¢; (dLtht + d%) [Cartan’s formula]

dt
= ¢ <_d>\t + dtd/\t> [Def of X; and )\t]

Exercise 3.5. There exists an analog of Darboux’s theorem for contact manifolds. Write
the statement of that theorem and give a proof sketch of it.

Solution:

Theorem (Contact Darboux). Let M be a 2n + 1-dimensional manifold, o be a contact
form on M, and p € M. There ezists (U, z1,...,Zn,Y1,.-.,Yn, 2) @ coordinate neighbor-
hood of p such that

aly =dz+ ) x;dy;.

j=1
Proof sketch: Do the same steps as for the proof of the symplectic Darboux’s theorem,

but now the Moser trick computation changes slightly. Define oy = tag + (1 — t)agp. oy
is contact. We want to find ¢, such that ¢;oy = ap. Let X, be the flow of ¢,.

d .,
0= %gbtozt

= ¢; Lx, 0 + ¢; 0
= 0= LXtCYt + oy
= 1x,doy + dix, o + .
Write X; as X; = H;R; + Y;, where H; is some function, R; is the Reeb vector field of
ay, and Y; € ker oy. Then,
0= (tx,doy + dux, o + ) Ry
= dH(R;) + ay(Ry)
determines H; and
0 =1x,doy + dix, o + ay
ty,doy + dHy + oy
determines Y;. (Contact Darboux)[]

(Exercise 3.5)0
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4 Exercise sheet No. 4 - 16-05-2019

Let m denote the Lebesgue measure of Euclidean space. In these exercises we are going
to prove the following theorem.

Theorem (Sard). Let U € R™ be open, f: U — RP be a smooth map, and
C={x €U | rankdf(x) < p}
be the set of critical points of f. Then m(f(C)) = 0.

We present the proof given in | |. We will prove the theorem by induction on
n. Note that the theorem is true for n = 0. Assume then that the theorem is true for
n — 1. We must now show that it is true for n. Define

Ci={xeU|VIst 0<|I|<i:D'f(z)=0}.

In other words, C; is the set of x such that all partial derivatives of f of order < ¢ are 0
at x. Notice that
03013023033”'.

Exercise 4.1. Show that m(f(C — C})) = 0. Hint: since if p = 1 then C = C}, we
may assume that p > 2. Show that it suffices to assume that x € C — Cy and prove
that there exists V. C R™ a neighborhood of x with m(f(V N C)) = 0. Assume then
that v € C — Cy. Construct an appropriate diffeomorphism h: V — V' C R™ (where
V' > x is the desired neighborhood) that makes the following work. g = f o h™' should
map certain hyperplanes to hyperplanes. Consider the restriction of g to one of these
hyperplanes and apply the induction hypothesis to the restriction. Use Fubini’s theorem
below to conclude about the critical set of g. And also make h such that g has the same
critical points as the restriction of g to the hyperplanes.

Solution:
1. We may assume that p > 2.

Proof: We show that if p =1 then C = (.
C={z €U | rankdf(z) =0}
={z e U |df(z) =0}
={xeU|VIst. 0<|I|<1: D'f(z) =0}
= (.
2. Tt suffices to assume that © € C'— (' and prove that there exists V' C R™ a neighbor-
hood of x such that f(V N C') has measure zero.

Proof: For each z € C' — C} let V,, be a neighborhood of z such that f(V, N C') has
measure zero. Pick a countable basis for R” by open balls and for each x let B,
be a basis element such that x € B, C V.. Then the set {Bgc}xec_Cl is countable,
1Bz} sec—c, = {Bu; }ien and covers C' — C.

m(f(C’—Cl))gm(f( U BxﬂC’)) [the B, cover C' — C}]

zeC—-Cq

SRS
[
— =
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8.
9.

=m (f (U Bﬂﬁz n C)) [{Bz}mecfcl = {Bévi}z‘eN]

ieN
<> m(f(Bs,NC)) [measure of the union]
1=1
<> m(f(Va,NC)) [Ba; C Vi
i=1
=0 [hypothesis].

. There exist i =1,...,nand 7 =1,...,p such that 8fﬂ( ) # 0.

Proof: x ¢ C4.
We may assume that 7,7 = 1.

Proof: If not, compose f with functions that switch the coordinates. The result for
the new function is equivalent to the result for f.

. Let h be the function defined by

h: U — R"
Yy (fl(y)7y27-"7yn)-

. dh(z) is nonsingular.

Proof:
L@ 0 o0
m=|
0 0 .. 1
and
d
det(dh(z)) = T-2)
# 0.

There exist V' C R"™ a neighborhood of z and V' C R™ a neighborhood of h(z) such
that h: V — V' is a diffeomorphism.

Proof: Step 6 and the inverse function theorem.
Let g= foh™': V' — RP.
Let C" == {y € V' | rankdg(y) < p} be the set of critical points of g.

10. C' = h(V N C).

Proof:
y € V' and rankdg(y) < p

— hil( ) € V and rankdf(h~'(y))dh ' (y) < p [chain rule]
“y) € V and rankdf(h'(y)) <p [dh~Y(y) is an iso. by 7]
Hy)eVand h™(y) e C [def. of C]

= yeh(Vnl).

11. ¢(C") = f(V N ).
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12.

13.

14.

Proof:

g(C") = foh™H(C) [def. of g in step §]
=foh toh(VNC) [step 10]
= f(VNnCO).
For all (t,z9,...,2,) € V', g(t,z9,...,2,) € {t} x RP™! C RP.
Proof:
12.1. Let (y1,...,yn) = A1 (t, 20, ..., Tp).
12.2. fi(y) =t.
Proof:
(F1(¥): 92,5 yn) = hlyr, - yn)  [def. of A]
= (t,za,...,x,) [def. of y in step 12.1].
12.3. Q.E.D.
Proof:
g(t, w9, ..., xn) = foh  t,zo, ..., 2) [def. of g in step §]
= f(y1,. -, Yn) [def. of y in step 12.1]
= (f1(y), (), -, fo(w))
= (& fa(y), - fp(w) [step 12.2]
€ {t} x RP71L.

The map ¢': {y € V' | y; =t} — {z € R? | z; = t} defined by restricting g is well
defined.

Proof: By step 12.
Forallt e R g(C'N{y e R" | y1 =t}) =g(C")N{z € RP | z; = t}.
Proof:
14.1. (Q):
Proof:
g(CN{y eR" [y =1}) Cg(C)Ng({y €R™ | y1 =t}) [set theory fact]
CglCYN{zeRP |z =t} [step 12].

14.2. (D):

Proof:
14.2.1. It suffices to assume that (21,...,2,) € g(C") N {z € R? | 2; =t} and
prove that there exists (y1,...,y,) € C"N{y € R" | y; =t} such that

91, yn) = (2150, ).

14.2.2. There exists (y1,...,yn) € C’' such that g(y1,...,yn) = (21, .., 2p)-
Proof: (z1,...,2p) € g(C").

14.2.3. y, = t.

Proof:
(t, 20, ., 2p) = (21,22, ..., %) [z €{2€RP| 2y =t}]
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=91, Yn) [step 14.2.2]
€ {y} xRY  [step 12].

15. The set of critical points of g* is ¢’ N {y € R" | y; = t}.

1 0
dg: [* dgt]’

y € V' such that y; = t is critical for ¢* if and only if it is critical for g.
16. Q.E.D.
Proof:
Induction hypothesis
= VteR:m, 1(¢"(C'"N{y eR" | yy =t})) =0 [step 15]
Ve R my i (9(C Ny ERY [y =) =0 [y
—VteR:m, 1(g(C")YN{z€RP | 21 =1t}) =0 [step 14]
— m,(g(C")) =0 [Fubini’s theorem]
= m,(f(VNC)) = [step 11]. O
Exercise 4.2. Show that m(f(C’z- —Cit1)) =0for alli > 1. Hint: use a similar strategy

as before, choosing some local diffeomorphism h, restricting g = f o h™! to appropriate
hyperplanes, and using Fubini’s theorem below.

Proof: Since

is the restriction of ¢]

Solution:
1. It suffices to assume that © € Cy — Cyi,1 and prove that there exists V' C R" a
neighborhood of = such that f(V N Cj) has measure zero.

2. There exist r =1,...,p and sq,...,8k11 € {1,...,n} such that # #0.
s1 Sk4+1
Proof: x € Cy — Claq.
ok fr )

Proof: x € Cp — Clyq.

4. We may assume that s; = 1.

Proof: If not then compose f with a map that switches coordinates. The result for
this map implies the result for f.

5. Define a function h by
h: U — R"
Yy (U)(y), Y2, ... 7yn)

6. There exists V' a neighborhood of x and V' a neighborhood of h(x) such that h: V —
V' is a diffeomorphism.

Proof:
887;1 0 --- 0
0 1 0
dh(z) = .
0 0 - 1

and the inverse function theorem.
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7. MCyNV) C {0} x R,

Proof: We must assume that y € Cy, NV and prove that w(y) = 0.
ok f
()

Ty + o Oxg, |

w(y) = 5
= 0.

8. Define g = foh™': V' — RP. Define g: ({0} xR"" )NV’ — RP to be the restriction
of g.

9. Every point of h(Cy N V) is a critical point of g.

Proof:
9.1. It suffices to assume that z € h(Cy, N'V) and prove that dg(z) = 0.

9.2. There exists x € Cj, such that h(z) = 2.

9.3. Q.E.D.
Proof:
dg(z) = dg(h(z)) [z = h(z)]
= df (x)dh*(h(z)) [chain rule]
=0 [since z € C* then df (z) = 0].

10. m(f(C, N V)) = 0.

Proof:
m(f(CeNV))

m(goh(Cr,NV)) [Step 7]
(9(CritPts(g)))  [Step 9]

<m
m(CritVal(g))
0

[By the induction hypothesis]. O

Exercise 4.3. Show that for k sufficiently large m(f(Cy)) = 0. Hint: show that it
suffices to assume that 1" is a cube with edge 0 and prove that m(f(Cy N I")) = 0.
For x € Cy N I™ approximate f by a Taylor polynomial. For each r € N, consider a
subdivision of I"™ into r™ cubes of edge §/r. Use the Taylor approximation to obtain an
estimate on the measure of f(Cy N I™) depending on r.

Solution:
1. Let k > n/p — 1. It suffices to show that m(f(Cy)) = 0.

2. It suffices to assume that I™ C U is a cube with edge d, and prove that m(f(C,NI™)) =
0.

Proof: CY is covered by countably many such cubes.

3. There exists a function R and a constant ¢ such that forall z € C;,NI"and h € I"—x
flx+h)= f(x)+ R(x,h)
and
[R(x, )| < ¢f|p]**.

Proof: Taylor’s theorem and z € C*.

4. For all r € N, let Iy, ..., I,» be the cubes that form a subdivision of I™ into smaller
cubes of edge 0 /7.
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5. For all r and for each x € C,, N I™ let I, be a cube of I, ..., I,» that contains x.

6. For all r and for all z € C, N I", f(I,) is contained in a cube of edge a/r*™ where
a = 2c(y/né)*t.
Proof:
6.1. It suffices to show that f(B, ms(2)) C Br(f(x)), where 2R = a/rF*+!.
Proof:
F(L) € F(B jasye(a)
C Bgr(f(x)) [hypothesis]
C some cube of edge 2R.

6.2. To show that f(B szs/-(7)) C Br(f(r)) it suffices to assume that h is such that
||| < +/nd/r and to prove that ||f(z+ h) — f(z)| < R.

6.3. Q.E.D.
Proof:
Iz +h) = f(@)] = IR, h)]  [step 3]
< c|h|* step 3]
k+1
<c <\/f5> [assumption]
=R.
7. For all 7, m(f(Cy N I™)) < aPrn=(+1p,
Proof:
m(f(Cen 1) <77 sup m(f(L) - [f(Cen ™) € f (Usecy Tn)
<" (TI:LH)Z) step 6]
— qPynpk+1)
8. Q.E.D.

Proof: For each r € N, m(f(C, N I™)) < aPr"~*+1P therefore m(f(Cr N I™)) = 0. O
Exercise 4.4. Conclude the proof of Sard’s theorem.
Solution: Let k be as in Exercise 4.3.

m(f(C))
k
=m (f <(C’ —Cy)u U (C; — Ciyq) U C’k+1>> [write C' as a union of its subsets]

=1

<m(f(C—Ch))
+ Zm(f(ci — Ciy1))

+m(f(Cikt1)) [additivity of measures]
=0+0+0 [Exercises 4.1, 4.2 and 4.3]
= 0. [l

Theorem (Fubini). Let A C R? = R! x R~ be a measurable set. If for all z € R we
have that m,_1(ANz x RP~1) =0 then m,(A) = 0.
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5 Exercise sheet No. 5 - 23-05-2019

Let M be a compact (2n+1)-dimensional manifold without boundary and A be a contact
form on M. Let X be the Reeb vector field of (M,\). Let W = R x M be the
symplectization of M, and J be an SFT-like almost complex structure on W. In exercise
sheets 5 and 6 we are going to prove the following theorem by Hofer:

Theorem (Hofer). Let it: C — Rx M be such that s+ J(@)i; = 0 and 0 < E(@1) < co.
Let T = [cu*d\. Then T > 0 and for every sequence 0 < Rj, — oo there exists a
subsequence (Ry)ren and x a T-periodic solution of (t) = X (x(t)) such that u (Rke%t)
converges (as a function of t) in the C*-topology to x(t).

The proof that we give is the one given in | |. For hints on how to solve each
exercise, read the proof sketches in the solutions.

Exercise 5.1 (Hofer lemma). Let (X,d) be a complete metric space. Show that for
every f: X — [0,+00) continuous, g > 0, g € X, there exist ¢ € (0,¢0] and © € X
such that

(i) ef(x) > eof(o),
(i) d(x, ) < 2,

(i) Vy € Bo(2): fly) < 2f ().

Proof sketch: If (iii) holds for € = gy, © = x( then we are done. Otherwise let ¢; = g(/2
and choose x; such that d(z1,20) < g9 and f(xy) > 2f(xo). If (iii) holds for € = ¢,
x = x1 then we are done. Otherwise continue with this procedure. Use the completeness
hypothesis to show that this procedure must stop.

Solution:

1. Consider the following algorithm:

For k=0, if €0, o satisfy (iii), then stop
otherwise let &1 = ¢¢/2 and
choose z; such that d(xy,z0) < ep and f(z1) > 2f(x0)
For k=1, if e1, o1 satisfy (iii), then stop
otherwise let €9 =&1/2 and
choose xo such that d(xq, 1) < &7 and f(z2) > 2f(x1)

2. The algorithm stops.

Proof:
2.1. Assume by contradiction that the algorithm does not stop

2.2. There exists a sequence (zx)reny C X such that d(zy, 5 1) < ex_1 and f(zg) >
2f(£(]$k_1).
Proof: By assumption in step 2.1.

2.3. The sequence (z)ren is Cauchy.
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Proof: i
d(zpyr, o) < Y d(zj41,7;)  [triangular ineq.]
j=k

IA
K

€j [step 2.1]

j=k
9] €0
=3 % [step 1]
j=k
o . . .
= 51 [lim. of geometric series].

2.4. The sequence (zy)gen has a limit z,, € X.
Proof: Step 2.3 and X is complete.
2.5. limy_ o f(x}) = f(2s) € RT.
Proof: f is continuous.
2.6. limyg_,o f(xg) = 00.
Proof: Since f(x1) > 2f(x-1) then f(zx11) > 2" f(21) and by f(z1) > 2f(x) >

0 the result follows.
2.7. Q.E.D.
Proof: Steps 2.5 and 2.6 give a contradiction.

3. Let k be the iteration where the algorithm stops. Let ¢ = ¢, and x = zy.

- (D)

Proof:
ef(x) = erf(zy)
> €k2kf(l’0)
= &of (o).
. (ii)
Proof:
d(z,z9) = d(xg, xq)
k—1
< €j
§=0

IA
.Mg
|2

I
& 1
o4

. (iii)

Proof: x = xy, € = ¢}, satisfy (iii) because the algorithm stops at k.

. Q.E.D.

Proof: Steps 4, 5 and 6 show that € and x defined in step 3 are as desired. O
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Exercise 5.2. Let @ = (a,u): C — R x M be a .J-holomorphic map such that E(i) <
+oo and [ u*d\ = 0. Show that @ is constant.

Proof sketch: Use [cu*d\ = 0 to show that there exists an f such that df = u*A. Then
® =a+if: C — C is holomorphic. So we have replaced v by a holomorphic map
®: C — C such that E(®) = E(u). We now show that ® has uniformly bounded 1st
derivatives. Assume otherwise, by contradiction. There exists a sequence (zj)reny C C
such that Ry = |V®(z;)] — +o00. Define ®4(z) = @ (zk + Rik) — ®O(2x). So as k
increases, @y is given by evaluation ® on smaller and smaller regions near z;. Using the
Hofer lemma, upgrade the sequences z;, R, such that now an argument using the Arzela-
Ascoli theorem shows that @ converges to some ¥: C — C in the C}p-topology. Show
that U must be a biholomorphism using the properties of the limit. So it has infinite
energy. Since ¥ is obtained from ® by looking at smaller and smaller open sets in the
domain of ¢ and rescaling them biholomorphically, E(V) < E(®) < co. Contradiction.
So ® has bounded derivatives. By Liouville ® is affine. By finite energy ® cant be a
biholomorphism, hence it is constant. So u is constant.

Solution:
1. There exists an f € C°(C,R) such that df = u*\.

Proof:
L1 w'd) = § (|musl3 + |maw3) ds A dt.

Proof: Compute the form in local coordinates.
1.2. d(u*X) = 0.
Proof:
0= j’c u*d\ [hypothesis]

= ;/C; (\mus]?, + |7r,\ut]3) ds ANdt [step 1.1],
therefore, |m\us|3 = 0 and |myu|3 = 0. By step 1.1, d(u*\) = u*d\ = 0.
1.3. Q.E.D.
Proof: u*\ is a closed form in C by step 1.2, hence it is exact.
2. Define ® =a+if: C — C. Then & is holomorphic.

Proof:
2.1. df = —daoi.

Proof:
df = u*\ [step 1]
= —daoi [projection of the J-holomorphic

curve eq. for @ onto R & (X)].

2.2. ® satisfies the Cauchy-Riemann equations.

Proof:
! todd =10da—df
=tods+daot [step 2.1]
=daoi+iodfoi [step 2.1]
=d® oi.
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2.3. Q.E.D.
Proof: Step 2.2 and ¢ is C*™.

. For each ¢ € X define 7, = d(¢dt) € Q*(C). Then, for all ¢ € %,

[c o7, = /(C T (o) < Ex(7).

Proof:
w*d(pN) [def. of Energy]

= / D7 [def. of 74].
C

. ® has uniformly bounded first derivatives.

Proof sketch: Argue by contradiction. Show that if the derivatives of ® explode then

® cant have finite Energy, using a "Bubbling-oftf" argument.

Proof:

4.1. Assume by contradiction that ® does not have uniformly bounded first deriva-
tives.

4.2. There exists a sequence (2x)reny C C such that Ry = |VP(zx)| — +o0.
Proof: Step 4.1.

4.3. Let g, = %. Then 0 < g, — 0 and ¢, R, — +00.
4.4. There exist sequences ¢}, € (0,¢x], 25, € C such that
(i) e[ Ve(zp)| = er[ V(2]
(i) [z — 23] < 2¢f,
(iif) Vz € By (21): [VO(2)| < [VO(z)]
Proof: Hofer’s lemma applied to X = C, f = |V®|, xg = 2, €0 = &, giving
r =z, and € = ¢},
4.5. Let R} == |V®(z;)|. The sequences ¢}, z;, satisfy:
(i) Rye) — o0
(i) 0 <&, — 0
(iii) Ry, — +o0

Proof:
4.5.1. (i)
Proof:
Rie,, = €,/VP®(z,)| [def. of R;]
> x| VO(z,)| [step 4.4 (i)]
= iRy [def. of Ry]
— 400 [step 4.3]
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4.6.

4.7.

4.8.

4.5.2. (ii)
Proof: By step 4.3, €}, < e, — 0.

4.5.3. (iii)

Proof: By steps 4.5.1 and 4.5.2.
Define

.. C—C
z2— @ (z,’C + Z,) — B(z).
k

The maps &, satisfy
(i) [Ver(0)] =1
(i) [©x(0)| =0
(iii) V2 € By g o): [VOi(2)] <2
Proof:
4.7.1. (i)

Proof:

IV, (0)] = |}%€V(I>(z,/€)| (def. of dy and chain rule
=1 [def. of Ry].

4.7.2. (i)

Proof:

D1(0) = B(z;,) — D(2;,) [def. of D]
= 0.

4.7.3. (iii)

Proof: 1t suffices to assume that z € B g (o), and prove that [V®(z)] < 2.
1
zZ € B‘EZR%(O) <~ — 2 € BR;(O)

iy,
1
= 2+ Rz € Bu (2,)
1
= |V<I> (z;C + R’) < 2|VO(z,)| [step 4.4 (iii)]
12
= [VP,(2,)] <2 [chain rule].

There exists a subsequence of ®; (whose index we still denote by k) and ¥: C —
C holomorphic such that ®; converges in the Cyy topology to W.

Proof:
4.8.1. For all K C C and | € Ny compact there exists a Cx; > 0 such that for
all k e N z
d'd
lk < CK,l-
dz max, K

Proof: Use the gradient bound of step 4.7 (iii) and ®,(0) = 0 (step 4.7
(ii)) to get a uniform C%bound. Use Cauchy’s integral formula and the

27



4.8.2.

4.8.3.

uniform C%bound to get uniform C°°-bounds.

For all K C C compact there exists a subsequence (@kj, «)jen of @5 and
Py € C*(K,C) a holomorphic map such that ®;, . converges to ®g in
the C'*°-topology.

Proof: By step 4.8.1, for all [ € N the sequence <I>,(€l) is uniformly bounded
and equicontinuous. By the Arzela-Ascoli theorem applied to CDS)), there
exists @Y € C°(K;C) and a subsequence of <I>,(€0) that converges uniformly
to UY.. By the Arzela-Ascoli theorem applied to @, there exists Uk €
C°(K;C) and a further subsequence of @S) that converges uniformly to
Wl Since
Ul = lim @,

= jz lim (I)g))

= L)
we conclude that Ux = W% is differentiable. Repeating this forl = 2,3, ...
we conclude that ¥y € C®(K,C) and we get for each [ a further subse-
quence of the previous one. The desired final subsequence is that whose
[-th term is the [-th term of the [-th subsequence. This final subsequence
is such that &, converges uniformly with all derivatives to Vg. So W is
holomorphic.

Q.E.D.
Proof: For K = B;(0), use step 4.8.2 to take a subsequence of ® that con-

verges uniformly with all derivatives to W' € C*(B;(0),C) holomorphic.
For K = By(0), use step 4.8.2 to take a further subsequence of ®; that
converges uniformly with all derivatives to W? € C*°(By(0), C) holomor-
phic. Then Qﬂm = WUl Repeat this procedure for each radii in N. We
get a map ¥ € C*°(C, C) which is holomorphic. Consider the subsequence
whose [-th term is the [-th term of the [-th subsequence that we created.
Then this final subsequence ®; converges uniformly with all derivatives to

v,

4.9. U satisfies |[VU(0)| = 1 and |[V¥(z)| <2 on C.

Proof: Steps 4.7 and 4.8.

4.10. W is of the form ¥(z) = az + B for a # 0, o, 5 € C.

Proof: ¥ is holomorphic and |VW¥(z)| < 2 on C imply by Liouville’s theorem
that it is affine. |VW(0)| = 1 implies nonzero derivative.

4.11. Choose ¢ € ¥ nonconstant and let ¢x(s) = ¢(s — Re(P(2;,))).
Kk

Proof:

/ Or7, = / ®*74, [change of variables]
Bt gt (0)

Bt g (1)
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< / D7y, [positive integrand]
o

- /(C @d(¢))  [step 3]

< E(u) (¢ € 3]

< 00 [hypothesis].

413, E(i)) > [. U7,
Proof: 1t suffices to show that for all R > 0, E(@) > [, ) V" 7s-
E(a) > lim oy, [step 4.12]

k—oo JB 0
A

> i o7 "R —
_kggo Br(0) kTo e} Ry, o]
= U*r, step 4.8].
Br(0) ¢ [ P ]
4.14. Q.E.D.
Proof:

+o00 > E(a) [hypothesis]
> / U*r,  [step 4.13]
C

= / Ty [W is a biholomorphism]|
C

= 400 [¢ is nonconstant]
gives a contradiction.

5. & is of the form ®(z) = az + 3, o, p € C.
Proof: ® is holomorphic, step 4 and Liouville’s theorem.
6. a=0.

Proof: Assume otherwise. Then ® is biholomorphic. Choose ¢ € ¥ nonconstant.
+o00 > E(u) [hypothesis]

> [[@dgn) [oex
= | o tep 3
/C Te [step 3]
= | 7 [® is a biholomorphism]

= 400 [¢ is nonconstant]
gives a contradiction.

7. QE.D.

Proof:
Steps 5,6 = ® is constant
= a, f are constant

— @ 1S constant.
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6 Exercise sheet No. 6 - 06-06-2019

Let M be a compact (2n+1)-dimensional manifold without boundary and A be a contact
form on M. Let X be the Reeb vector field of (M,\). Let W = R x M be the
symplectization of M, and J be an SFT-like almost complex structure on W. In exercise
sheets 5 and 6 we are going to prove the following theorem by Hofer:

Theorem (Hofer). Let ii: C — Rx M be such that s+ J ()i, = 0 and 0 < E(@1) < co.
Let T = [cu*d\. Then T > 0 and for every sequence 0 < Rj, —> oo there exists a
subsequence (Ry)ren and x a T-periodic solution of (t) = X (x(t)) such that u (Rke%ﬂ
converges (as a function of t) in the C*-topology to x(t).

The proof that we give is the one given in | ]. This book contains the following
analytical result that we are going to need:

Theorem (C*-bounds). For each ¢ > 0, let
L(c) = {a: D — Rx M |, + J(@)a, = 0, |, + lif® < ).

Then, for each ¢ >0, § € (0,1) and o € N* with |a| > 1 there exists d > 0 such that for
all u € T'(¢) we have that
HDauHcO(m) <d.

For hints on how to solve each exercise, read the proof sketches in the solutions.

Exercise 6.1. Let 7: R x S' — R x M be such that o, + .J(9)5; = 0, E(¢) < oo and
Jov*d\ > 0. Show that there exists ¢ > 0 such that for all (s,t) € R x St |[Vo(s,t)| < c.

Proof sketch: Assume by contradiction that such a ¢ does not exist. Extend ¥ to 9: R x
R — R x M periodically in the second argument. There exists a sequence zj, = (s, tx)
such that Ry :== |V(sy, tx)| — +oo. Let

o (o ) W+ 7).

So as k increases Uy is given by evaluating v on smaller and smaller regions around zj.
Using the Hofer lemma, upgrade the sequences (s, tx), Ry such that now the C*°-bounds
theorem and an argument using the Arzela-Ascoli theorem shows that ¥, converges to
some w := C — C in the Cfy-topology. By the previous exercise and [ w*d\ = 0 then
w is constant. By |Vw(0)| = 1 w is nonconstant. Contradiction.

Solution:

1. Assume by contradiction that such a ¢ does not exist. Consider the function o: R x

R — R x M that is obtained by extending v periodically in the second argument.

2. There exist sequences (sg,tx) € R x S! and g, € RT such that
(1) Rk = |Vz7(sk,tk)| — OO
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Proof: By assumption, there exists a sequence (sy, tx) satisfying (7). Let e = %.

Then (i), (ii), (iii) are satisfied. Use Hofer’s lemma with X = S' x R, f = |Vq|,
xo = (S, tr), €0 = €k tO get new (s, 1) = x, e = . These satisfy (i), (ii), (iii), (iv).
Then since (s, tg) satisfies (i), it also satisfies (v).

. Define z;, := (sy, tx) and
Uy = (br(2), vi(2))

= <b <zk + };) —b(zg),v (Zk + é)) .

. U satisfies
(i) [Voe(0)] =1
(ii) |Vir(z)| <2 for z € B, g, (0)
(iii) @ is J-holomorphic on C
(iv) Vo € X JB. 5 0) Urd(p)) < E(0) < +00
(v) VR > 0: limgt00 [p,(0) VEdA =0

Proof:
4.1. (i)

Proof: By definition of ¥4, and the chain rule.
4.2. (i)

Proof: By step 2 (iv), definition of ¥ and the chain rule.
4.3. (iii)

Proof: v, is a composition of holomorphic functions.
4.4. (iv)

Proof: Let vi(s) = (s — b(zx)).
pd(p) = / 0d(prA)  [change of variables]

e Ry (0 Be) (zk
<[ wden)
Rx[0,1]
< E(0) [or € 2]
< 400 [hypothesis].

4.5. (v)
Proof: Since
/ v\ < E(D) [1 €3]
Rx[0,1]

< 400 |hypothesis],

then
lim vpdA\ = lim v*d\ [change of variables]
k—00.JBR(0) k=00 JBRr/R, (1)
= 0.

. There exists a subsequence of ¥y (whose index we still denote by k) and
w=(f,w): C—RxM
such that 75, converges in C(C,R x M) to .
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Proof: By 4, the C*°-bounds theorem above, and an application of the Arzela-Ascoli
theorem similar to the one in the proof of exercise 5.2.

6. w satisfies
(i) [Va(0)] =1,
(i) [Vw(2)] <2 on C,
(iii) w is holomorphic on C,
(iv) E(w) < E(0) < 400,
(V) Jow*dA =0.
Proof: Step 4 (i), (ii), (iii), (iv), (v) and step 5.

7. Q.E.D.
Proof: By [Jcw*d\ = 0 and exercise 5.2, w is constant. By |Vw(0)] = 1, w is
nonconstant. Contradiction. O

Exercise 6.2. Prove Hofer’s theorem.

Proof sketch: Use the biholomorphism
¢: R x S* — C\{0}
(S,t) N 627r(s-|—i1t)

to write the result in terms of a map © = 0 ¢: R x S* — R x M. In these terms
we want to show that for each sequence s, € R going to 400 there exists a subsequence
such that lim$",__ v(sy,-) is a Reeb orbit. As before, we are going to do some analysis
to get a C'™ limit of a sequence of functions, and then we prove that this limit map
defines a Reeb orbit. Exercise 6.1 gives us gradient bounds for ©. Define 04(s,t) =
(b(s4+ sk, t) —b(sk,0),v(sk+s,t)). So as k increases, ¥y, is given by evaluating v on circles
with higher and higher s coordinate. We point out that if the result of the theorem is
true, then a suitable subsequence of ¥ should converge to a cylinder of Reeb orbits. See
the figure below.

+00 M

w

ea]

Again using the C*°-bounds theorem and the Arzela-Ascoli theorem we can find out that
a subsequence of 7, converges Cfp to some w € C*(R x S*,R x M). Like in exercise 5.2
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use [ow*d\ =0 to find f such that df = w*d\ and replace w by ® = +1if: C — C.
Use these new maps and the properties of ¥ and @ to show that @ must really be a
cylinder of Reeb orbits.

Solution:

1. Tt suffices to assume that © = (b,v): R x S — R x M satisfies

(i) © is holomorphic on R x S,
(ii) 0 < E(0) < 400,
(iii) 3p € M: Vt € S*: lim,,_ v(s,t) = p,
(iv) T = [py g U dA,
(v) si € R is a sequence converging to 400

and to prove that there exists a subsequence of (sy)ren (Whose index we still denote
by k) and x a T-periodic solution of z(t) = X (z(t)) such that v(sy,-) converges to
z(T-) in the C*°-topology.

Proof: By exercise 5.2, T := [ u*d\ > 0. Consider the map
¢: R x St — C\{0}

(S, t) — 627r(s+it),

and define o = @ o ¢, €>™% = R}, €*™k := Ry. Then, the stated result for ¥ implies
the result for .

2. de>0:V(s,t) e R x S*: |Vi(s, t)] < c.

Proof: By exercise 6.1.
3. For each k € N, define oy, = (b, vx): R x ST — R x M by

Uk(s,t) = (b(s + sk, t) — b(sk, 0),v(sg + s,1)).
4. ¥, satisfies
(i) O is holomorphic on R x S,

(i) 0 < E(0g) < 400,

(iii) Ip € M: Vt € S': lim,, o vi(s,t) = p,

(iv) bx(0,0) = 0.

Proof: (i), (ii), (iii) follow from step 1 (i), (ii), (iii). (iv) follows from the definition of

b

5. There exists a subsequence of si, (whose index we still denote by k) and @w = (8, w) €
C>®(R x S', R x M) such that @ converges in the C53-topology to w.

Proof: Similar to the one in exercise 5.2. By step 4, the C*°-bounds theorem gives
bounds on higher derivatives coming from the gradient bounds. Then apply the
Arzela-Ascoli theorem as in exercise 5.2.

6. w satisfies
(i) @ is holomorphic on R x S*,
(i) 0 < E(w) < +o0,
(iii) Vsp € R: [gusr wA=T,
(iv) Jrygr w*dX\ = 0.
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Proof:

6.1.

6.2.

6.3.

6.4.

(i)

Proof: By steps 4 (i) and 5.
(i)

Proof: By steps 4 (ii) and 5.
(iii)

Proof:
A=l ) step 5
{So}Xslw kirfw {so}xst O step 3]
= lim v*d\  [Stokes + change var.]
k—400 J(—c0,50+55]xS1
= v dA
Rx St
=T [assumption in step 1 (iv)].
(iv)
Proof:
w*d\ = lim w*d\
RxS?t R—+00 J[-R,R]xS!
= i li A tep 5
PLLLLNY I step 3)
= lim lim v*d\ [change var.|
R—+00 k—+00 J[—R+sp,R+s5]x S1
= REIEOO 0 [frxg1 VAN < 0]
= 0.

7. Consider the periodic extension of w: R x S? — Rx M to C — R x M, and denote
it by w as well.

8. There exists f € C*°(C,R) such that df = w*d\.

Proof: Since [p, g1 w*dX = 0, then [ w*d\ = 0. Use the same argument as in exercise

0.2,

9. Let =p+if: C — C. Then, ®

(i) is holomorphic,

(ii) is non-constant,

(iii) has bounded gradient.
Proof:

9.1.

9.2.

(i)

Proof: By df = w*d\ and @ being holomorphic, ® satisfies the Cauchy-Riemann

equations.

(i)

Proof: Assume by contradiction that ® is constant. Then, 0 = df = (w*\) o 1,
so w*A = 0. Since [w*d\ = 0 and the integrand is positive, w*d\ = 0. By

TM = ker A ® ker d\, w = 0. Contradiction.
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10.

11.

12.

13.

9.3. (iii)

Proof:
SU(IC3|V‘1)|2 = QSU(IC)|VB|2 [® = 5+ if is holomorphic]
ze z€
< 2sup|Va|* [ = (B, w), triangular ineq.]
zeC

< 400,
where the last step is true because step 2 implies a gradient bound for vy, which
implies a gradient bound for w.

® is of the form ®(z) = az + b, for a = ay +ias, b = by +iby € C,a # 0.
Proof: Step 9 and Liouville’s theorem.
6(5 + Zt) = ais+ bl'
Proof:

B(s +it) = Re(P(s +it))

= a1s — (lgt + bl-

Since 3 is 1-periodic in t, ay = 0.
For each s, w, = a1 X, (w) and z(t) := w(s,a; 't) is an orbit of the Reeb vector field
of period 1.

Proof:
12.1. ws = 0.
Proof:
ws = myws + Mwg) Xy (w)  [TM = ker A\ @ ker d\]
= Mws) Xy (w) [Jcw*d\ = 0]
= -G X\(w) [dB = (w*\) o]
=0 [step 11].
12.2. wy = a1 X\ (w).
Proof:
wy = mywy + AMwy) Xy (w)  [TM = ker A @ ker d)]
= Alwe) Xy (w) [Jew™dA = 0]
= — G X\ (w) [dB = (w*\) o]
= a1 X\ (w) [step 11]

12.3. daw(s,a;'t) = Xx(w(s,a;'t)).

Proof: By step 12.2 and the chain rule.
12.4. Q.E.D.

Proof: Steps 12.2, 12.3 and the definition of Reeb vector field.
w(s,t) = (Ts+b,z(Tt)).

Proof:
13.1. T = a;.
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Proof:

13.2. Q.E.D.

Proof:

14. Q.E.D.
Proof:

T = w* X [step 6 (iii
[ owh btep 6 i)
1
= / AMw,)dt  [write the integrand in coordinates]
0
1
:/ ardt [step 12]
0
= aj.

17}(8, t) = (6(37 t)v w(s, t))

= (a5 + b, z(at)) [steps 11 and 12]

= (T's + by, x(Tt)) [step 13.1].
o
G vlse, ) = Hm ve(0,) - [step 3
=w(0,") [step 5]
= z(T") [step 13].
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7 Exercise sheet No. 7 - 25-06-2019

In this exercise sheet we are going to prove the spectral theorem for compact, self adjoint
operators:

Theorem (Spectral theorem for compact self-adjoint operators). Let H be a complex
Hilbert space and T: H — H be a compact self-adjoint operator. Let r = rank(T) =
dim(imT"). Then, there exist sets {\,}._,, {en}h_1 of eigenvectors and corresponding
eigenvalues such that:

(i) {en}:_; is an orthonormal basis for imT';
(il) {A\n}h_, is the set of nonzero eigenvalues of T';

)
)
(ii)
)
)

Ml el > > 0;
(iv) If r = oo then lim,, oo A, = 0;
(v

The proof we give is based on | ]. For hints on how to solve the exercises, read
the proof sketches in the solutions. Let H be a Hilbert space and T be a compact,
self-adjoint bounded operator.

Ve e H: Tx =30 Mz, en)en.

n=1

Exercise 7.1. Show that
|T|| = sup [(Tz,z)|.

fl=f|=1

Proof sketch: (>) is a short computation that uses the Cauchy-Schwarz inequality. For
(<), show that
Vy,z € H: 4Re(Ty,z) <2 sup |(Tx,x)|.
llzll=1
The proof of this last equality uses the parallelogram law. Then for each x with norm 1
find y, z such that || Tz|| = 2Re(Ty, 2).

Solution:
1. (>):
Proof: By definition of supremum, it suffices to assume that = € H, ||z|| = 1, and
prove that ||T'|| > [(Tz, z)|.
T > ||Tz|] [def. of norm of operator]
= [[T|l[l«] [zl =1]
> |(Tx,z)| [Cauchy-Schwarz inequality].
2. (2):
Proof:

2.1. It suffices to assume that x € H, |[z|| = 1 and prove ||Tz|| < sup,; [{(Tz, )|,
2.2. Vy,z € H: 4Re(Ty, 2) < 2supy, =1 (Tx, 7).

Proof:
4Re(Ty, z)
=2((Ty, z) + (Ty, 2)) Vr e C:2ReT =7 + 7]
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Ty, z) + (z,Ty)) [def. of complex Hilbert space]
Ty, z) + (T'z,y)) [T is self adjoint]
=(T(y+2),y+2) —(T(y—=2),y—=z  [|algebra]

(T(y +2),y+2)| = [(T(y — 2),y — 2)|

<
<2 sup [(72,2)] (I + =P + ly —<I)

=2 sup |<T:17,x)|(||y||2 + ||z||2) [paralelogram law].
[l]|=1

2.3. dy,z € H: 2Re(Ty, z) = ||Tz||.
Proof: Let y = x and 2z = 2. Then,

2T T
x
2Re(Ty, z) = 2Re<Tm, >
2|| T
1
=2Re | T2
2| T
= || 7]

2.4. Q.E.D.

Proof: By steps 2.2 and 2.3, ||Tz|| = 2Re(Ty, z) < sup, = [{(T'r,z)|. By step
2.1 this proves the result.

3. Q.E.D.
Proof: Steps 1 and 2. n

Exercise 7.2. Show that ||7']| is an eigenvalue of 7" or —||T|| is an eigenvalue of T

Proof sketch: Use exercise 7.1 to create a sequence z,, such that (T'x,,z,) converges to
A = £||T"]|. Since T' is compact, some subsequence of T'x,, converges to y. Use the two
established limits

nh_)rrolO(Txmx@ =\

T 7, =

to show that Ty = \y.

Solution:

1. There exists a sequence {x,}neny C H such that ||z, = 1 for each n and such that
limy, o0 (TTp, x,) = A, where A = ||T|| or A = —||T|.
Proof: By exercise 7.1, there exists a sequence {x, },en C H such that ||x,| = 1 for
each n and lim,_,o |(Tx,, x,)| = ||T]|. Consider the subsets of N

St ={neN| (Tz,,z,) >0},

ST ={neN| Tz, z,) <0}
At least one of these subsets is infinite. Take the subsequence of {z, },en that corre-
sponds to that subset. If that subsequence is ST then

lim (T, ) = || T
and if it is S~ then
nlggJTxmwn) = —||T.

2. There exists a subsequence of z,, whose index we still denote by n, and y € H such
that Tz, converges to y.
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Proof: T is compact and ||z,| = 1.

3. lim, o0 || T2y, — Azy]|* = 0.

Proof:
lim |72, — Az, |® = lim ([|T2a]® + A = 20T, 2,) )
n—00 n—00

< lim (2)% = 2\(T'z,, 2) ) A2 = ||T)|3]
=0 iy, oo (TTp, T,) = A

. 1
4. limy, 00 T = 3y

Proof:
y = lim Tz, step 3]
= lim Tz, + lim (Az, —T2,)  [step 2]
= lim Tz,
n—oo
5. Ty = \y.
Proof:
Ay = lim ATz, [step 3]
= \T <nh_>r£1O £Un> [T is continuous]
1
= \T Y [step 4]
=Ty.
6. Q.E.D.
Proof: By step 5 A is an eigenvalue of T, where by step 1 A = +||T||. O]

Exercise 7.3. Show that for all £ > 0 the set
{A € C | \is an eigenvalue of T, |\| > ¢}
is finite.

Proof sketch: Assume by contradiction that there exists ty > 0 and a sequence of pairwise

distinct eigenvalues {\, }nen such that |A,| > to. Let {e, }nen be a sequence of associated

unit eigenvectors. Since T is self-adjoint the e, are an orthonormal set. Show that

|ITe, — Tenl|| > |to| for all n,m distinct. This contradicts compactness of T'.

Solution:

1. Assume by contradiction that there exists ¢y > 0 and a sequence {\, }en of pairwise
distinct eigenvalues of T" with |\,| > ¢y and a corresponding sequence {e;, }nen of unit
eigenvectors.

2. Vn,m € N: (e, €m) = Opnm-

Proof: If n = m then (e,,e,) = 1 because the vectors have unit norm. If n # m,
then A, # \,, and

Anlen, em) = (Tep, em)
= (en, Tem)
= (en, €m) Am

—> 0= (en, em)-



3. Vn,m € Nwith n > m: ||Te, — Tenl| > |tol.

Proof:
|Te, — T€m||2 = || Anen — )‘memHQ
= (M€n — Mnlm, An€n — Amem)
= H)‘nenHQ = 2(Amem, Anen) + [[Amem|?
= |/\n|2 + |)‘m|2 [step 2]
> 2|to]?.
4. Q.E.D.
Proof: By step 3, T'e,, does not have a convergent subsequence. By compactness of
T, Te, has a convergent subsequence. Contradiction. O

By exercise 7.3, the set of eigenvalues of T' is countable. By compactness of T, each
eigenvalue A has finite multiplicity m,. There exists a list {\,}°°; containing all the
eigenvalues of T', that is ordered from biggest to lowest in absolute value, such that each
eigenvalue A shows up in the list m, times. For each eigenvalue A in this list, by the
Gram-Schmidt algorithm there exists an orthonormal basis of ker(7" — I\) consisting
of my eigenvectors. Consider the list {e,} >, obtained from listing the eigenvectors
obtained previously in the same order as the eigenvalues. Consider the truncated list
{\.}7_, that only has nonzero eigenvalues and the corresponding list {e,}7_,

Exercise 7.4. Show that {e,}/_; is an orthonormal set.

Proof sketch: If the eigenvectors are in the same eigenspace, then the result follows by
the construction of the eigenvectors. If they are not, show that A, (e,, emn) = (€n, €m)Am
using the fact that T is self adjoint.

Solution:

1. Tt suffices to assume that n,m = 1,...,J and prove that (e,, e;,) = dpm.

2. Case A\, = \,,.

Proof: Then e,, e, correspond to the same eigenvalue A\, = \,,, so they are part of
an orthonormal basis for ker(T' — A, I) by construction. Therefore (e, €,,) = dnm.

3. Case A\, # A\

Proof:
Anlens €m) = (An€ns €m)
= (Ten, em)
= (en,Ten) [T is self adjoint]
= (€n, Am€m)
= (ens €m)Am
= 0= (en, em) [An 7 Al O

Exercise 7.5. Show that span{e,};]_; =imT.

Proof sketch: Let M = span{e, };_,. Using the fact that the e, are eigenvectors of T, it’s
easy to show that M CimT. M =imT is equivalent to M+ = (imT)*, which is what
we prove. Using the properties of the orthogonal complement and 7" being self—adjoint, we
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can show that (imT)* = ker T. Then, ker T = (imT)* C M+ follows from M C imT.
For M+ C kerT, since M is the span of the eigenvectors of T' it is invariant under 7.
Therefore, since T is self-adjoint, M+ is also invariant under 7. Therefore it suffices to
show that the map T'|y;.: M — M is zero. Assume that it is nonzero. Then by exercise
7.2, it has a nonzero eigenvalue, which is also an eigenvalue of 7. The corresponding
eigenvector is in M+ because it is an eigenvector of T|,,. but it is also in M+ because
M = {e,}J_, contains all the eigenvalues associated to nonzero eigenvectors. Then the
eigenvector is zero, which is a contradiction and therefore T'|;;1 = 0.

Solution:
1. Let M = span{e,}/_,.

2. M CimT.
Proof:
2.1. It suffices to assume that u € M and prove that u € im T
22 u=Y"_(u,e,)en.

Proof: Since u € span{e, }J_;.
2.3. Case J < +o0.

Proof:
J
= (u,ey)e
n=1
= i(u, 6n>iT6n
n=1 >\n
J
=T (u, en )
n=1 ”
2.4. Case J = o0.
Proof:
= i 3Gl
. 1
= k]ggo ngl(u en>>\—nT6n
! 1
= <Z<u en) ) en> [T is continuous]
n=1 n
2.5. Q.E.D.
Proof: Steps 2.1, 2.3 and 2.4.
3. ker T = M+
Proof:
3.1. kerT C M+.
Proof-
ker T = (imT*)*  [general fact of operators on Hilbert spaces]

= (imT)* [T is self adjoint]
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= (im 7)™+ [general fact of orthogonal complements]
= (imT)* [general fact of orthogonal complements]

c M* [Step 3 and general fact of orthogonal complements].

3.2. M+ C kerT.

Proof:
3.2.1.

3.2.2.

T(M) C M.

Proof:
3.2.1.1. It suffices to assume that © € M and prove that Tu € M.

3212 u=Y!_{u,e,)e,.
Proof: Since u € span{e, };_;.
3.2.1.3. Case J < 0.
Proof:
Tu

T(i(u, en>en> [Step 3.2.1.2]

I
M~

(u,en)Tey,
1

3
Il

I
M~

(u, ) Anen

Mm
=i

3.2.1.4. Case J = cc.
Proof:

k—o0 el

J
Tu = T< lim ) (u, en>en> [Step 3.2.1.2]

J

= kh_g)lo nz::l(u, en)Tey, [T is continuous]

J
= lim Z(u, en) Anén

k—oo el

€ M.
3.2.1.5. Q.E.D.
Proof: Step 3.2.1.1, 3.2.1.3 and 3.2.1.4.

Let N = M*. Then N is invariant under 7. Let Tx: N — N be the
restriction of T' to NN.

Proof:
3.2.2.1. It suffices to assume that v € M+ and prove that Tv € M.

3.2.2.2. It suffices to assume that Yu € M: (v,u) = 0 and prove that
Vw e M: (Tv,w) = 0.

3.2.23. Twe M.
Proof: w € M and M is invariant under 7.

42



3.2.2.4. Q.E.D.
Proof:
(Tv,w) = (v, Tw) [T is self adjoint]
=0 [By hypothesis].
3.2.3. Ty is a compact self-adjoint operator.
Proof: 1t is the restriction of a compact self-adjoint operator.
3.2.4. Ty = 0.

Proof:
3.2.4.1. Assume by contradiction that Ty # 0.

3.2.4.2. Ty has a nonzero eigenvalue A with corresponding eigenvector
e € N nonzero.

Proof: Exercise 7.2.
3.2.4.3. X is an eigenvalue of T with corresponding eigenvector é.
Proof:
= )é.
3.24.4. Forsomen=1,....,J, A=\, and é = ¢,,.
Proof: By steps 3.2.4.2 and 3.2.4.3 and the fact that the list
{\.}]_, contains all nonzero eigenvalues.
3.2.4.5. Q.E.D.
Proof: Since
M*>é& [Step 3.2.4.2]
=e, [Step 3.2.4.4]

€ M [def. of M],
¢ = 0, but since € is an eigenvalue é # 0. Contradiction.

3.2.5. Q.E.D.
Proof: Since Ty =0, then Vo € N: Tv =0, i.e. v € kerT.
3.3. Q.E.D.
Proof: Steps 3.1 and 3.2.
4. Q.E.D.

Proof:
imT = (ker T)* [T is self-adjoint]

= M+ [Step 3]

=M [M is closed]. O
Exercise 7.6. Show that J = r.
Proof sketch: This is simply because J = dim(im7") by exercise 7.5 and r = dim(im T")
by the definition of rank. If J and r are finite, then imT" = imT. If not, notice that
dimim7T < dimim 7 and that J is countably infinite.
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Solution:

1.

Case J finite.
Proof:

J=dim(im7") [exercise 7.5]
=dim(im7T) [if dim(imT) is finite then im 7" = im T
=r [def. of rank]

2. Case J countably infinite.

Proof:
2.1. r < J.
Proof:

J =dim(im7') [exercise 7.5]
>dim(im7") [im7 CimT]
=r [def. of rank]

22. r>J.

Proof: Assume by contradiction that r» < .J, in other words that r is finite. Then
im 7' is finite dimensional, so im 7" =1im 7. So r = J. Contradiction.

2.3. Q.E.D.
Proof: Steps 2.1 and 2.2

3. Q.E.D.

Proof: Steps 1 and 2. n

Exercise 7.7. Prove the spectral theorem.

Solution:

1.

(i):

Proof: Exercises 7.4, 7.5 and 7.6.

(ii):

Proof: By construction of the set {\,}/_, and J =r.

(iif):

Proof: By construction of the set {\,}/_, and J = r.

(iv):

Proof sketch: By exercise 7.3.

Proof: Assume by contradiction that J = oo and that A, does not converge to 0.

There exists € > 0 and a subsequence of \,, whose index we still denote by n, such
that |A,| > e. By exercise 7.3, this is a contradiction.

. (v):

Proof sketch: Consider P: H — M the orthogonal projection. Since Px € M, we
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can expand it in a basis:
J

Pz =Y (Pz,e,)e,.

The result follows from computing T'x = TPz with the basis expansion for Pz.
Proof: Let P denote the orthogonal projection to M.
Tex=T(Px+ ([ - P)z) [H=Mo M|

=TPx [ — P is the projection onto M+ = ker T
J
= (Z(Paj, en)en> [Px =M ={e,};]_]
n=1

=> (Pz,e,)Te, [T is linear bounded|

= M(Pz,ep)e [Te, = Anen)
n=1
J
= Az, en)en (I — P)r € M+ and e, € M = ((I — P)z,e,) =0].
n=1

6. Q.E.D.
Proof: Steps 1, 2, 3, 4 and 5.
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8 Exercise sheet No. 8 - 26-06-2019

In this exercise sheet we are going to prove the Carleman similarity principle:

Theorem (Carleman similarity principle). Lete > 0, p > 2, C' € LP(B., Homg(C",C")),
J € W?(B., Homg(C", C")) such thatVz € B.: J(z)* = —idcn, and u € W'(B.,C")
be such that Osu(z)+J(2)0u(2)+C(2)u(z) = 0 and u(0) = 0. Then, there exist § € (0,¢)
and ® € WP (Bs, Homg (C",C")) such that:

(i) Vz € Bs: ®(z) is invertible;
(ii) Vz € Bs: J(2)®(z) = O(2)i;
(iii) The map
o: By — C"
2z ®(2) tu(z)
is holomorphic.

Let V be a complex finite dimensional vector space and (S?, ) be the sphere with
its standard complex structure. Let

0: W(S? V) — LP(S? Home(TS%, V)
u+— du+1ioduoj.

The proof that we give is based on | ] and | |.To prove the Carleman
similarity principle, we will need the following theorem. It is a particular case of the
Riemann-Roch theorem, which is a theorem stating the facts about differential operators
coming from Fredholm theory. We present an informal proof sketch of it, based on the
explanation given in | |, for the sake of completeness.

Theorem (Riemann-Roch for 5). For every p > 1,
(i) 0 is a Fredholm operator;

(ii) kerd = {u € WHP(S?, V) | u is constant};

(i)
)

(iv

d is surjective;
As an operator between complex Banach spaces, ind 0 = dime V.

Proof sketch:

1. (i):
Proof sketch: Use Weyl’s lemma (the lemma that ensures semi-Fredholm provided a
certain inequality holds) and the Calderon-Zygmund inequality to prove the necessary
inequality.

2. (ii):
Proof sketch: Let u € ker 0. By elliptic regularity, u is C*° and therefore holomorphic.
Since u is defined on S2, it is bounded. By Liouville’s theorem, u is constant.
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3. (iii):
Proof sketch: We will explain how one could define a map
R: LP(S? Home(TS?,V)) — W'P(S2 V)
which is a right inverse of 9. Consider the North and South pole in S2, N, S € 52,
and the associated stereographic projections ¢y : S?\{N} — C, ¢g: S*\{S} — C.
Using ¢, R|s2\(n} can be viewed as a map
R|32\{N}2 LP<C,MC«C, V)) — Wl”’((C, V),
and analogously for R|s2 (s3. To define R, it suffices to define it on S*\{N} and on
S*\{S}. Let
T: C3°(C, V) — C™(C,V)

(Tv)(2) = hm( ! /C\BE(O) MdC).

2m ¢

Define R’SQ\{N} by
R|SQ\{N} . C’go((C, HOmc(C, V)) — COO(C, V)
vdz — T,
and R|s2\ (gy analogously (by the same formula as above, but it would be imprecise to
say that they are defined equally since in each case there are different identifications
happening). R|sz\(n} and R|gz\ (s} extend to operators from LP to W' that agree
on the intersection of their domains, so we have a map
R: LP(S? Home(TS?,V)) — WHP(S2, V).

This map is such that

be given by

doR= ide(s2,HTmc(Ts2,V)) .
4. (iv):
Proof sketch: By steps 2 and 3. [

Exercise 8.1. Show that we may assume that J(z) = 1.

Proof:
1. It suffices to assume that the theorem holds in the case J(z) = i and the hypothesis
of the theorem, and to prove that the conclusions of the theorem are true.

2. Let ¥ € W?(B., Homg(C",C")) be such that for each z € B. ¥(2) is invertible and
U(2) J(2)¥(z) =i.
Proof: Let uy,...,u, be the canonical basis of R". Then, uy, J(2)uy,..., Uy, J(2)u,
is a basis of C™ as a vector space over R. Define ¥(z) by

U(2)(z1 + iy, Tn + i) = Y (z5u5 + y;J(2)u;).
j=1

Then W is the desired map.
3. Let v € W'P(B.,C") be given by v(z) = ¥(z) 1u(z).
4. O + 10w + Cv = 0, where C' == U1(9,¥ + JO,¥ + CV) € LP(B., Homg(C",C,")).

Proof:
0= 0su+ JOu+ Cu [by hypothesis|
= 05(Vv) +i0,(Vv) + CPv [def. of v]
= V(v +i0w) + (0;¥ + JO,¥ + C)v
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= W (0sv + 10w + Cv) [def. of C].
The statement about the regularity of C' is true because VU is of class WP and the
expression of C' has first derivatives of W.

. There exists 6 € (0,¢) and & € WP(B,, Homg(C",C")) such that

e Vz € Bs: ®(z) is invertible;
o Vz € By:i®(z) = O(2)i;
« The map &(z) = ®(z)'v(2) is holomorphic.

Proof: By step 4 the data satisfies the hypothesis of the theorem. By assumption the
theorem is true for J = 1.

. Let ® := U®. Then,

o Vz € Bs: ®(2) is invertible;
o Vz € Bs: J(2)P(z) = O(2)3;
e The map o(z) := ®(2)~u(z) is holomorphic.
Proof: ®(z) is invertible because it is the product of invertible maps. J(2)®(z) =
®(2)i because ¥ and ® satisfy the same equation. Since
o(z) = ®(2) "u(z)
= (9(2) 7" (2) " tulz)
= P(2) ()
=3(2)

and & is holomorphic, then ¢ is holomorphic.

7. Q.E.D.

Proof: Steps 1 and 6. O

Exercise 8.2. Show that we may assume that C' is i-linear.

Proof:

1.

It suffices to prove that there exists a function A € LP(B., Hom¢(C™, C")) such that
Vz € B.: A(2)u(z) = C(2)u(z).

Proof: If such a function exists, then we can apply the theorem in the case that C' is
t-linear, which we are assuming to be true, to get the result.

| Let O = L(C'FiCi).
. For each D € L*>°(B., Homg(C",C")), define

Ap =C" +C~D € L*(B.,Homg(C",C")).

. If D is complex anti-linear then Ap is complex linear.

Proof: By definition of C*, C*i = +iC*.
D is complex anti-linear

<= Di=—iD [def. of complex anti-linear]
= C Di=-C"iD
< C Di=iC"D [CEi = +iCH]

< CTi+C Di=iC"+iC"D [C%i= +iCF]
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< (C"+C D)i=i(Ct+C D)
— Api =1iAp [def. of Ap]
<= Ap is complex linear.

5. If D(2)u(z) = u(z), then Ap(z)u(z) = C(z)u(z).

Proof:
Ap(2)u(z) = (C*(2) + C(2)D(2))ulz)  [def. of Ap]
= (C*(2) + C‘(z))u(z) [hypothesis]
=C(z)u(z) [def. of C*].
6. The map -
_ @) Pu(z)u(z)"E if u(z) #0
Dolz)e = {O if u(z) =0,
satisfies:

e it is complex anti-linear;
e it is in L*>°(B., Homg(C",C"));
o Do(2)u(z) = u(z).

Proof:
6.1. Dg is complex anti-linear.
Proof: -
[ Puu()TiE i u(z) £ 0
Dolz)it = {0 if u(z) =0,
_ {—i|U(Z)\_QU(Z)U(2)T€_ if u(z) # 0
| =i0 if u(z) =0,
6.2. Dy is of class L.
Proof: 1t suffices to show that Dy is bounded.
Gl L (|
|u(2)[? IU(f)I2
< WIIU(Z)HHU(Z) |
= T ) e (u(z). )
i ‘11‘(2)’2 |u(2)]]u(z)] [Cauchy—Schwarz, equality case]
6.3. Dou(z) = u(z).
Proof:
() Pu(z)u(z) (=) i u(z) £0
Dolz)u(z) = {0 if u(z) =0,
_ {IU(Z)\‘QU(Z)IU(Z)\Q if u(z) # 0
1o if u(z) =0,
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B {u(z) if u(z) #0
u(z) ifu(z) =0,
= u(z).
6.4. Q.E.D.
Proof: Steps 6.1, 6.2 and 6.3.
7. Q.E.D.
Proof: By steps 4, 5 and 6, Ap, is the desired map in step 1. n

Exercise 8.3. Prove the Carleman similarity principle in the case J(z) = i and C' is
t-linear.

Proof:
1. For 6 € (0,¢), define C5 € LP(S?, Home(C", C")) by
C(z) if z € Bs
C =
o(2) {0 if = € $%\ By,
2. Let V := Hom¢(C",C"). For ¢ € (0,¢), define
Ds: WHP(S?, V) — LP(S? Home(TS?, V)
® — 0P + C5Pdz.

3. For § € (0,¢), define

DY WHP(S? V) — LP(S? Home(TS? V) x V

® — (00 + CsPdz, ®(0)).
4. Dg¥ is bijective.
Proof: Riemann-Roch theorem.

5. There exists ¢’ € (0,¢) such that for all § € (0,0"), D§¥ is bijective.

Proof:
5.1. There exists an ¢ > 0 such that for all
E: W' (S? V) — LP(S% Home(TS? V) x V
with || DY — E|| < €/, E is bijective.

Proof: The set of bijective operators between Banach spaces is open in the op-
erator topology.

5.2. There exists a ¢’ € (0,¢) such that for all 6 € (0,4"), || D§" — D§Y|| < €'
Proof: lims_||Cs||» = 0.

5.3. Q.E.D.
Proof: By steps 5.1 and 5.2.

6. For each § € (0,¢') there exists a unique ®5 € WH?(S? Homc(C", C")) such that
D(;CI)(; =0 and (D(;(O) = ld(Cn

Proof: By step 5.
7. There exists a § € (0,4’) such that for all z € S?, ®;(z) is invertible.

Proof;: B
7.1. %5 + CsPsdz = 0 in Bs and 0P5 = 0 in S?\ Bs.
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Proof: Since Ds®s = 0.
7.2. lim5_>0||<I>5 - id(CnHWl,p = 0.

Proof: By step 7.1, as § — 0 ®s converges to a solution of 0® = 0, ®(0) = idcn,
which is ®(z) = idcn by step 3.

7.3. QED.

Proof: By step 7.2, it suffices to choose ®5 so near idc» in WP that
||ldet & — 1f|co < 1/2.

. Let & := ®&5. Then P is as desired, i.e.
(i) (1) Vz € Bs: ®(2) is invertible;
(i) (i) Vz € Bs: J(2)®(2) = D(2)i;
(iii) (77i) The map
o: B — C"
2z ®(2) tu(z)
is holomorphic.

Proof:
8.1. Vz € Bys: ®(z) is invertible.

Proof: By step 7.
8.2. Vz € Bys: i®(z) = O(2)i.
Proof: By the construction of ® in step 6, ® € W1?(5% Hom¢(C",C")).
8.3. o is holomorphic.
Proof:
0 = 0su+ 10yu + Cu
= 0s(P0) + i0y(Po) + C Do
= (050 + 1010) + (0;P + 10, + C)o
= ®(050 +1i0,0)
8.4. Q.E.D.
Proof: Steps 8.1, 8.2 and 8.3.
. Q.E.D.

Proof: By step 8. L

by hypothesis]
by definition of o]
Leibnitz rule]

[
[
[
[By step 6 and C' = C5 on By].
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9 Exercise sheet No. 9 - 27-06-2019

Exercise 9.1. Let X, Y be Riemann surfaces and ¢: ¥ — ¥/ be a holomorphic map.
Show that for all p € ¥ there exists a unique n € Ny such that there exist coordinate
neighbourhoods of p in ¥ and of ¢(p) in 3’ such that with respect to these coordinates

¢ is given by ¢(z) = 2"

Proof sketch: Start by writing ¢ locally as it’s Taylor series: ¢(z) = X272, a;jzl. Let
n = min{j | a; # 0} and t(2) = 332, a;27™" (so t(z) is such that ¢(z) = t(z)z").
Find some r holomorphic such that ™ = ¢ and let a(z) = 2zr. By our choice of n, «
is a local biholomorphism: o/(0)¥ = r(0)f = ¢(0) = a, # 0. Then ¢(z) = 2"t(z) =
2"r™"(z) = (a(z))", and composing the coordinate chart that we had with a gives the

desired coordinates. See figure 1.
Vv
®
D

l«v
c 1 C ,

7 i /%{\lmo

o/ )~ o .
Béj Qlz) : 2 o, ¥ 3" k)
J—.n

o£'(0) 0
U“ 5-‘}. KIU” —.>
s biholom nosd n@)" = )
X o = TnR)
C N

\\4

/—\v” /‘Néodi‘
N S

Qea'(z2) = 27

Figure 1: Proof sketch of existence.

For uniqueness, note that n is the number of points in the preimage of a carefully chosen
point, see figure 2.
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N ¢(;‘ Uzi.‘ (0))

(j:m
¢, | Y,
/4

C N U; C A Vi’

ﬁf‘*“ g, / \‘Qé\‘q‘a“"“ EACIvD)

NZN VA

Qé (2) « 27
Figure 2: Proof sketch of uniqueness.
Solution:

1.

There exist coordinate charts (U C X,U" C C,¢: U — U’) around p and (V C
Y,V ' CcC,¢p: V. — V') around ¢(p) such that ¢ == opo¢=t: U — V' is given
on U’ by its Taylor series expansion.

Proof: Take any coordinate charts around p, ¢(p), and restrict the domain to be
contained inside the radius of convergence of the holomorphic function ¢.

. We may assume that ¢ is not constant.

Proof: If ¢ is constant then n = 0 is as desired. If n’ € Ny is other number with the
same property, then it must be 0 because locally (z) = 2" is constant.

. Let

» {a;}jen be the coefficients of the power series of ;

e n=min{j | a; 0}
e t be given by
t: U — C
2 Y a2 "
j=n

We may assume that here exists a holomorphic function r: U" — C such that r(z)" =
t(2).
Proof: Let O be an open ball around a,, = t(0) # 0 contained in V' such that 0 # O,
and restrict U’ to t~!(O) and U such that ¢ is still bijective. On ¢t~1(O), we can define

an n-th root of ¢ because ¢(t~1(0)) = O is a small enough ball that does not intersect
0.

. Let a: U' — C be given by a = zr(z).
. There exists U” C U a neighborhood of 0, V”/ C C a neighborhood of 0, such that

alyr: U”" — V" is a biholomorphism.
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Proof: « is holomorphic,
a'(0) =7r(0) [by def. of a]
#0 [y (0) = an # 0],
and the inverse function theorem.
7. We may assume w.l.o.g. that U" = U".
Proof: Shrink U’ to U” 5 0 and U such that ¢ is still bijective.
8. Existence of n.

Proof: In the coordinate neighborhoods
(Ucx,U"cC,aogp: U— V") of p,

(Ve V' cCuy: VI — V) of p(p),

popo(aog)i(z)=1opogp oa(z)
= (a(a™'(2)))"

="

9. Uniqueness of n.
Proof: 1t suffices to assume that for j = 1,2,
(U; € 8,U; C C,¢;: Uy — Uj) is a coordinate neighborhood of p,
V;c X, V! c C,4: V; — V) is a coordinate neighborhood of 1 (p),
J J J J

such that with respect to these coordinate neighboorhoods ¢(z) = 2", and prove
that ny = ng. For j = 1,2 let g5 > 0 be such that B, (0) C Uj. Let p' €
M7 &5 ' (B:;(0)\{0}). Then
#olo' (p(p) = #&7 " (¥;(9(@)))

=#{z € Uj | 2" =;((p')}

=n;,
where in the last equality we used the fact that there are n n-th roots of a complex
number and they are in a circle centered at 0, B, (0) C U and ¢;(p') C B:;(0)\{0}.
So, n1 = #¢lg' (v(p)) = na.

10. Q.E.D.
Proof: Steps 8 and 9. [

Exercise 9.1 allows us to define the multiplicity of ¢ at p € £, mult, ¢, by

the unique n € Ny as in exercise 9.1 if that n is not 0

It, o =
iy @ {oo if that n is 0.

Exercise 9.2. Let 3, ¥’ be connected Riemann surfaces and ¢: ¥ — ¥’ be a holo-
morphic map. Show that if there exists p € ¥ such that mult, ¢ = oo, then for all p € X
mult, ¢ = oo.

Proof sketch: Let S = {p € ¥ | mult, ¢ = co}. By exercise 9.1, S is open and closed.
By hypothesis it is nonempty. Since ¥ is connected, S = X..
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Solution:
1. Let S == {p € ¥ | mult, p = co}.

2. S is open.

Proof: It suffices to assume that p € S and prove that there exists a neighborhood of p
contained in S. By exercise 9.1 and the fact that mult, ¢ = oo, there exist coordinate
neighborhoods U centered at p and V centered at ¢(p) such that with respect to
these coordinate neighborhoods ¢(z) = 0. Then, Vg € U: mult, p = co. So U is the
desired open neighborhood.

3. S is closed.

Proof: We show that 3\S is open. If suffices to assume that p € ¥\S and prove
that there exists a neighborhood of p contained in ¥\S. Let n = mult, p < co. By
exercise 9.1 and the fact that n = mult, ¢ < oo, there exist coordinate neighborhoods
U centered at p and V centered at ¢(p) such that with respect to these coordinate
neighborhoods ¢(z) = 2". Then, Vg € U: mult, ¢ < oo, because if it were oo for
some ¢ then on a neighborhood of ¢ ¢ would be constant, contradicting ¢(z) = 2".
So U is the desired open neighborhood.

4. Q.E.D.
Proof:
dp € ¥ mult, p = o0
= S#g
— S=X [ is connected, S # @, S is open and closed]
<= Vp € X: mult, ¢ = oo. [

Exercise 9.3. Let X, ¥ be compact, connected Riemann surfaces, and ¢: ¥ — ¥/ be
a nonconstant holomorphic map. Show that for all ¢ € >/

deg(p) = > multyp.

pEP1(q)

Proof sketch: For each q € ¥/, by exercise 9.1, ¢~1(q) is discrete, therefore finite by
compactness of . Therefore the sum on the right hand side is in N. To prove the
result it suffices to show that this sum does not depend on the chosen ¢, because if ¢
is a regular value then Vp € ¢~!(¢): mult, ¢ = 1 and the sum is equal to the degree of
. To prove that the sum is constant, it suffices to show that it is locally constant, by
connectedness of . Let then ¢ € ¥/, ¢ 1(q) = {p1, ..., pr}. Then, by exercise 9.1, there
exist Uy, ..., Uy pairwise disjoint coordinate neighborhoods of py,...,pg, V a coordinate
neighborhood of ¢ such that

(i) with respect to coordinates centered at p;, q, p(z) = 2%.

(i) elugpy: UiN\Mpsy — ©(U;)\{q} is a d;-fold covering map.

Using (i) and (ii) we can show that for all ¢ € V|

deg(¢) = dy + -+ dy.
both in the case where ¢’ = ¢ and in the case where ¢’ # q.
Solution:
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1. For all ¢ € ¥, o!(q) is finite.
Proof:

1.1.

1.2.

1.3.

1.4.

2. The map deg;(Q) =X

0 1(q) is discrete.

Proof: Tt suffices to assume that p € ¢~1(¢) and prove that there exists a neigh-
borhood U of p such that UNyp~*(¢) = {p}. By exercise 9.1, there exist coordinate
neighborhoods U centered at p and V' centered at ¢(q) such that with respect to
these coordinates ¢ is given by ¢(z) = 2". Since ¢ is nonconstant, n > 0. Then,
UnNe*(q) = {p}, because 2" = 0 < 2 = 0.

0 1(q) is compact.
Proof: q is closed, therefore o ~1(q) is closed, and p~!(g) C ¥ which is compact.

Let X be a topological space and K be a compact, discrete subset. Then K is
finite.

Proof: Assume by contradiction that K is infinite. For each = € K, let U, be a
neighborhood of x such that U, N K = {z}. Then {U,}.,cx is an open cover of
K that has no subcovers. Contradiction.

Q.E.D.
Proof: Steps 1.1, 1.2 1.3.

pe—1(q) Multy ¢ is constant.

Proof:

2.1.

2.2.

2.3.

2.4.

It suffices to show that deg; is locally constant, i.e. that for each ¢ € X' there
exists a neighborhood U, of ¢ such that deg:p |u, is constant.

Proof: It suffices to assume that ¢q,¢; € ¥’ and prove that deg;,(qo) = deg;(ql).
Since ¥’ is locally path connected (it is a manifold) and it is connected, it is
path connected. Let v be a path joining ¢y and ¢;. For each ¢ in the image of
v, let U, be a neighborhood of ¢ such that deg/, |y, is constant. Then {U,}qeim~
is an open cover of im~. Let Uy, Uy, Uy, ..., Uy be a finite subcover. Then
deg/,(qo) = degl,(q1)-

Let {pl, .. ;pk} = QO_l(q)

Proof: By step 1, p~!(q) is finite.

For each j =1,...,k, let U; be a coordinate neighborhood centered at p; whose
corresponding neighborhood in C is a ball, and V; be a coordinate neighborhood
centered at ¢(p;) = ¢ such that

« with respect to these coordinates, ¢(z) = 2%;

« Vi H(Vj) C U?:l Ui
Proof: By exercise 9.1 applied to each p;.

Vj=1,...,k: 3V; C V; an open neighborhood of ¢ such that

elupesy: UiMpit — ViN{d}
is a d;-fold covering map.

Proof sketch: See figure 3.

56



2.5.

w.nt. these coondinates, W(2) -« id\}

Figure 3: Proof sketch of covering map.

Proof: Let V] = o(U;) C V;. ¢(p;) = ¢, ¢~ '(q9) N U; = {p;}. By the coordinate
representation ¢(z) = 2% and the fact that the image of U; in C is a ball, the
image of ¢(U;) in C is a ball as well and V' is open. Then,

elopipy s UiNMpit — Vi\a}
is well defined and surjective. Let ¢’ € V/\{q}. We must show that ¢’ has a
neighborhood that is evenly covered by ¢. Since ¢(z) = 2% in U;\{p;} and U;

is a ball, g0|(}j1\{pj}(q’) is a set consisting of d; points pjl., ...,p;’. On each of the
p}, ...,p; the derivative of ¢ is nonzero, so there exist open sets O; > pé for
[ =1,...,d; such that

Plos: 0) — ¢(O})
is a diffeomorphism. Let W = ﬂldil ©(0"). Then W is a neighborhood of ¢ that
is evenly covered by ¢.

Let V:=j_, V]. Then Vg € V: degfp(q’) =dy+ -+ dg.
Proof:
2.5.1. Case ¢' =q.
Proof:
degi,(¢) = > mult,(p)
pEY(q)
= multy, ¢ + -+ mult,, ¢
=dy + -+ dj.
2.5.2. Case ¢’ #q.
Proof:
deg(¢)= D> mult,ep
pEL~1(q')
k dj
= Zmultpz_ ©
j=11=1 !
k dj
= Z 1
j=11=1
2.5.3. Q.E.D.
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Proof: Steps 2.5.1 and 2.5.2
3. Vg e X': deg(p) = degl,(q).
Proof: Let q be given. Let ¢’ be a regular value of ¢.

deg(,(q) = deg},(¢) [step 2]
= ) mult,p [definition of deg]]
per~H(q')
= > 1 [¢' is a regular value]
peP~Hq')
= #¢"'(q)
= deg ¢ [definition of deg + ¢ is holomorphic].

4. Q.E.D.
Proof: Steps 2 and 3.

38



10 Exercise sheet No. 10 - 09-07-2019

In this exercise sheet we are going to study the concept of simple and multiply covered
curves. We will use the results from exercise sheet No. 9. We follow the presentation
given in | .

Exercise 10.1. Let X, ¥ be closed connected Riemann surfaces. Let ¢: 3 — 3’ be
holomorphic. Show that

(i) degy > 0;
(ii) degy = 0 if and only if ¢ is constant;
(iii) degy =1 if and only if ¢ is a biholomorphism;
(iv) degp =k > 2 if and only if
(a) CritPts(yp) is finite;
(b) @lp—1s critval(e)) : @ (E'\ CritVal(y)) — X'\ CritVal(yp) is a k-fold cover-

ing map;
(c) ¥z € CritPts(y):
Med{2,...,k}:

JU a coordinate neighborhood centered at z:
AU’ a coordinate neighborhood centered at ¢(z):
with respect to these coordinates ¢ is given by p(z) = 2!,

Proof sketch: Use the description of the degree from exercise 9.3

degp = Z mult, ¢

pep~(q)
and the coordinates from exercise 9.1/the definition of mult, ¢.

Solution:
1. (i):
Proof: Let ¢’ € X.
degp = > mult, ¢ [exercise 9.3]

pep~1(q)
>0 [By def. of mult].
2. (ii):

Proof:
2.1. (=)

Proof: Let y be the only point in the image of ¢, and y' € ¥\{y}. Then, ¢/ is

regular.

degp = #9~'(¢/)
= 0.

22. (=)
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2.3.

3. (iii):

Proof: Assume by contradiction that ¢ is nonconstant. Then, since degy = 0,
VyeX: ) mult,p=0.

z€p—1(y)
Since ¢ is nonconstant, by exercise 9.2 mult, ¢ € N, therefore

VyeY: o y) =@.
Contradiction.

Q.E.D.
Proof: Steps 2.1 and 2.2.

Proof:
degp=1<=Vye¥: > mult,p=1 [9.3]

4. (iv):

z€p~1(y)
< vVyeX:receo(y) and mult, p =1 [by 9.2, mult, ¢ > 1]
<= ¢ is bijective and Vx € ¥: mult, p =1
<=  is bijective and a local biholomorphism

<= ¢ is a biholomorphism.

Proof:

4.1.

4.2.

(=):

Proof: Let y € ¥ be a regular value. Then, since ¢ is a k-fold branched covering,
there exists V' a neighborhood of y in X'\ CritVal(¢) and there exist Uy, ..., U
pairwise disjoint open in ¥\ CritPts(y¢) such that

1) ¢ '(V) = U= Uj,
(ii) ¢|v,: U; — V is a homeomorphism.
Then,
degp = #¢ *(y) [def. of deg + ¢ is holomorphic]

= k. [(i) and (ii)].
(=):

Proof:
4.2.1. (c):

Proof:
4.2.1.1. It suffices to show that mult, ¢ # co and mult, ¢ # 1.

Proof: By exercise 9.3, | = mult,p € {2,...,k}. The result
follows from exercise 9.1.

4.2.1.2. mult, ¢ # oc.

Proof: Assume by contradiction that mult, p = oo. Then ¢ is
constant, by exercise 9.2. By 2, deg ¢ = 0. Contradiction.

4.2.1.3. mult, p # 1.

Proof: Assume by contradiction that mult, » = 1. Then dp(z)
is an isomorphism. But dp(z) = 0 because z is a critical point.
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4.2.2.

4.2.3.

Contradiction.
4.2.1.4. Q.E.D.
Proof: Steps 4.2.1.1, 4.2.1.2 and 4.2.1.3.

(a):

Proof: Since ¥ is compact, it suffices to show that CritPts(p) is discrete.
For this, it suffices to assume that p € CritPts(y) and prove that there
exists a neighborhood U of p such that U N CritPts(¢) = {p}. By exercise
9.1, there exist coordinate neighborhoods U centered at p and V' centered
at ¢(p) such that with respect to these coordinates ¢(z) = z". Then U is
the desired neighborhood.

(b):
Proof:
4.2.3.1. It suffices to assume that y € X'\ CritVal(y) and prove that there
exist V' a neighborhood of y, Uy, ..., U, pairwise disjoint open
sets, such that
(i) ¢ (V) =Uj=1 U;

= U,
(ii) ¢|v,: U; — V is a homeomorphism.

Proof: By definition of covering map.

4.2.3.2. There exist xy,...,7;, € ¥ pairwise distinct such that ¢~ '(y) =
{.ZCl, c. ,xk}.
Proof: Since y is a regular value and by definition of deg.

4.2.3.3. For each j = 1,...,k, there exists UJ’- a coordinate neighborhood
centered at x; and V; a coordinate neighborhood centered at y
such that with respect to these coordinates p(z) = z.

Proof: By exercise 9.1, we only have to prove that mult,, ¢ = 1.
k= degyp [assumption]
k
= mult,; ¢ [exercise 9.1 and step 4.2.3.3]
=1

= Vj: 1 =mult,, ¢ [mult, ¢ > 1].
4.2.3.4. We may assume that Uj, ..., U, are pairwise disjoint.

Proof: Since the x1, ...,z are pairwise distinct and ¥ is Haus-
dorff.

4.2.3.5. We may assume that for each j, <p|U]/,: U; — Vj is a biholomor-
phism.

Proof: By restricting Vj to (Uj).
4.23.6. Let V =N, V; and U; = @]5]{1(\/). Then V and Uy, ..., Uy are
the desired open sets in step 4.2.3.1.
Proof: By steps 4.2.3.4, 4.2.3.5 and the definition of V' and Uj;.
4.2.3.7. Q.E.D.
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Proof: Steps 4.2.3.1 and 4.2.3.6.
4.2.4. Q.E.D.
Proof: Steps 4.2.1, 4.2.2 and 4.2.3.
4.3. Q.E.D.
Proof: Steps 4.1 and 4.2.
5. Q.E.D.
Proof: Steps 1, 2, 3 and 4. O]

Exercise 10.2. Let J be a smooth almost complex structure on C". Let u: By(0) — C"
be a nonconstant smooth J-holomorphic curve with u(0) = 0. Then, there exist

e £>0,

e ¢: B.(0) — B1(0) holomorphic such that ¢(0) =0,

e v: B1(0) — C" an injective J-holomorphic curve
such that u|p ) = vo . Let j = (¢7')*i.

Proof sketch: By the Micallef-White theorem, we can find coordinates ¢, ¥ (see the com-
mutative diagram (1)) and write u locally as a polynomial: if @ is the local representative
of u, 4(z) = (29, 2%p(2)). Intuitively speaking, our goal is to compose @ with a k-th root
function to make it injective. We start by stating a fact that describes how much “not
injective” @ is. Let ](z) = ze?™/4. Then,
a(z) = a(w) <=3 =0,...,¢g—1: w=1)(z) and @& = @ o).

Given this fact, define S = {l € {1,...,¢} | @ o] = 4} and m = minS. Then,
S = {m,2m, ..., km} where km = q. Because of this, we can define 9(z) = a(z'/*),
which will be injective and continuous. Now naively speaking we would like to define
v =1"1lod and ¢ = ¢. The problem is that the map ¢ coming from the Micallef-
White theorem is not holomorphic. So we must compose it with another map and
define v differently. Let then ®: (Bs(0),j) — (B1(0),4) be a biholomorphism such that
®(0) = 0. Then ® is such that ®(ze?™/*) = ®(z)e?/* (this can be proven examining the
group of automorphisms of B;(0) that map 0 to 0). Let & = 6o ®~!, and 9(2) = a(z/*).
Now show that v is injective, smooth and J-holomorphic. For smooth and J-holomorphic
note that this is true everywhere except at 0, and for 0 show that @ is of class W? and
use elliptic regularity.
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Solution:
1. There exist

e U C By(0) a neighborhood of 0, § > 0, ¢: U — Bs(0) a C%-diffeomorphism,
o W a neighborhood of 0 such that w(U) € W and ¢: W — (W) a C*-

diffeomorphism
such that @ ;=Y ouo ¢~ t: Bs(0) — (W) is given by
a(z) = (2%, 2p(2)),
where p is a polynomial such that p(0) = 0.
Proof: By the Micallef-White theorem.
2. Let

e foreachl € Z,
Wp: Bs(0) — Bs(0)
Z — zeQﬂil/q,

o foreach l € Z, uj = o1y,

e S={le{l,...,q} | uy = a},

e m=minS.
3. We may assume after restricting § that for all z,w € Bs(0), @(z) = 4(w) if and only

if there exists some [ = 0, ...,q — 1 such that w = ze*™/? and @ = u).

Proof:
3.1. We may assume after restricting ¢ that for all [,
Jdz € Bs(0): (z) = uj(z) <= Vz € Bs(0): 1(z) = uy(2).
Proof:
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3.1.1. uj(2) = (29, 29p}(2)), where p}(z) = p(2e*"/9) is a polynomial.
3.1.2. (& —w)(z) = (0,2%(p(2) — pi(2)))-
3.1.3. It suffices to show that after restricting ¢,
3z € B5(0)\{0}: (p—p))(2) =0
<= Vz € B;(0)\{0}: (p — p1)(2) = 0. (2)
3.1.4. For each [ let §; be such that either the only root of p — p) in Bs,(0) is 0,
or p — p; is constant in By, (0). Let 6 = min{dy,...,d,—1}.
3.1.5. Case: p — pj is constant in By, (0)
Proof: Equation (2) is true, because both sides of the equation are true.
3.1.6. Case: the only root of p — p; in B, (0) is 0.
Proof: Equation (2) is true, because both sides of the equation are false.
3.1.7. Q.E.D.
Proof: By steps 3.1.5, 3.1.6 and 3.1.4, ¢ is as desired in step 3.1.3.
3.2. Q.ED.
Proof:
(z) = (z) <= 27 = w? and 2(z) = wip(w)
< 29 =w and p(z) = p(w)
=3 =0,...,¢—1: w= 29 and a(z) = uj(2)
—31=0,...,¢—1: w= 2"V and 4 = uj,
where in the last equivalence we used step 3.1.
. m divides q. Let k = ¢/m.

Proof: Since @ = u,,, then VI € Z: 4 = uj,,. Assume by contradiction that m does
not divide ¢. Let
"=max{le{l,...,¢—1} | Im € S}.
Then (I* + 1)m — ¢ is smaller than m and is in S. Contradiction.
. Let

o forl=0,...,k—1, A
’gbli Bg(O) — Bg(O)

p Z€2ml/k7

e forl=0,....k—10 =100 =a.

. For all z,w € Bs(0), 4(z) = @(w) if and only if there exists some [ = 0,...,k—1 such
that w = ze?™/* and @ = u},,.

Proof: By step 3, 4(z) = a(w) if and only if there exists some [ = 0,...,¢ — 1 such
that w = 2?9 and @ = u). Such an [ in necessarily a multiple of m, [ = I'm.
Therefore, I’ € {0, ..., k—1} is such that w = 2™/ = 22>™/k and 4 = ul,,, = Q.

. Let © be given by
0: Bsr(0) — (W)

A

2 (2R,
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where z'/* is any w such that w* = z. Then © is well defined, continuous and injective.

Proof:

7.1. v is well defined.
Proof: Let wy, wy be such that w? = w§ = 2. Then, for some [ = 0,... k—1,
Wy = w162m’l/k‘

7.2.

(wy) = Gu(w, > VF)
= (w)

(wy).

>

>

P 1S continuous.

Proof:
7.2.1. v is continuous in B (0)\{0}.

Proof: Tt suffices to assume that z € Bg(0)\{0} and prove that o is
continuous on a neighborhood of z. This last statement is true, because

on a neighborhood of z we can define a continuous k-th root function (-)/*,
which will be such that & = @ o (-)"/*.

7.2.2. ¥ is continuous at 0.

Proof:
7.2.2.1. 5(0) = 0.

7.2.2.2. 9|0y : Bs(0)\{0} — ¥»(W) is holomorphic.

Proof: At every point except 0, it is possible to define a k-th root
holomorphic function (-)'/* such that © = @ o (-)'/*.

7.2.2.3. ¥ is bounded on a neighborhood of 0.
Proof: By the polynomial representation for .
7.2.2.4. v admits a continuous extension to 0, ?’: Bs(0) — (W).

Proof: By steps 7.2.2.2, 7.2.2.3 and the Riemann removal of sin-
gularities theorem.

7.2.2.5. ©(0) = 0.

Proof:
v'(0) = li_r)r(l) v'(2) [0 is continuous]
= lim o'(¢) [lim does not depend of the path]
R+5t—0
= lim o(t) [on Rt © = 9]
R+3t—0
= lim a(t"*) [(-)"* is a continuous function on R*]
R+35t—0
= a(0Y*) [@1, (-)/* are continuous]
= 0.
7.2.2.6. Q.E.D.

Proof: By steps 7.2.2.1, 7.2.2.5 and 7.2.2.4, v = ©'. By step 7.2.2.4

© =9’ is continuous.
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7.2.3. Q.ED.
Proof: Steps 7.2.1 and 7.2.2.
7.3. 0 is injective.
Proof: 1t suffices to assume that 21, 2o are such that 0(z1) = 9(22) and to prove
that z; = 29. Let wy, ws be such that w’f = 21, wlg = Z9.
0(z1) = 0(22) = G(wy) = @(wo)
— 3wy = wi ™k

ok kg 2milfknk ok
= 2o = wy = wy (e ) =wi = 2.

[by step 6]

7.4. QE.D.
Proof: Steps 7.1, 7.2 and 7.3.
8. We may assume after shrinking 0 that there exists ®: (Bs(0),j) — (B, ) such that

e ® is a biholomorphism,

. q)(O) == 0,
e Doty od (z) =y = y(2) = Yy(2).
Proof:

8.1. We may assume after shrinking § that there exists U a neighborhood of 0 and
®: (Bs(0),5) — (U, i) a biholomorphism such that ¢(0) = 0.

Proof: (Bs(0), ) is a two dimensional (over R) almost complex manifold. By the
Newlander-Nirenberg theorem, j is integrable. Therefore (Bs(0), 7) is a complex
manifold. The map & is then just a complex coordinate chart.

8.2. We may assume that U = B;(0).

Proof: By composing ® with a biholomorphism U — B;(0) coming from the
Riemann mapping theorem. The map U — B;(0) maps 0 to 0.
8.3. y(z) = emil/k,
Proof: The map
Z, — {1 € C*(B41(0), B1(0)) | ¥(0) = 0, is a biholomorphism}
[ — 4
is a group homomorphism and
{1p € C>(B1(0), B1(0)) | ¥(0) = 0,1 is a biholomorphism}
= { € C(B,(0), B1(0)) | 30 € [0,27): Vz € B;(0): ¢(z) = ze™}.

8.4. Q.E.D.
Proof: Steps 8.1, 8.2 and 8.3.
9. Let
o Ui=0 1

e U=1uoW,
e foreach I, @, == o = 1.

10. Let © be defined by
0: Bi(0) — (W)
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2 (2R,

¥ is any w such that w* = z. Then ¥ is well defined, and injective.

where 21/

Proof:
10.1. v is well defined.

Proof: It suffices to assume that w;, wy are such that w? = wf and prove that

a(w;) = (wy). Since w} = wk, there exists some | = 0,...,k — 1 such that

wy = wp ek,

o W (wy)
o W(we
oWo Tﬁl(wl)
oy o U (w)
o W(w)

= G(wy).

>

i(wy) =

QWﬂ/k)

>

1
<D

|
>

R

10.2. ¥ is injective.

Proof: 1t suffices to assume that wy, wy are such that @(w;) = @(wy) and prove

that w? = wk.

10.3. Q.E.D.
Proof: Steps 10.1 and 10.2.

11. ¥ is smooth and J-holomorphic.

Proof:
11.1. There exists a p > 2 such that o € W'?(B,C").

Proof:
11.1.1. 3C > 0: Vz € By(0): |du(z)| < Clz|77 L.

Proof: By the polynomial formula for .
11.1.2. Vz € By(0): |do(2)| < E]z|™ .
Proof: .
di(2)] < da(=%)| ]2
C

1 1
< Zorl@D 51
< ety

C
i;|zrn—1'
11.1.3. dv is of class L? in B;(0) for any p > 2.

Proof: By step 11.1.2.
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11.1.4. Q.E.D.
Proof: By step 11.1.2, dv is the weak derivative of v.
11.2. v € C*(B,C").
Proof: By step 11.1 and elliptic regularity.
11.3. ¥ is holomorphic in B;(0)\{0}.

Proof: Everywhere except at 0 we can define a holomorphic map (+)
that o = o (-)'/k.

17k such
11.4. v is holomorphic at 0.

Proof: By steps 11.2 and 11.3.
11.5. Q.E.D.

Proof: Steps 11.2, 11.3 and 11.4.

12. Let & > 0 such that B.(0) C U. Let v =4¢ 109, ¢ = (¥ 0 ¢)*|5 (9. Then v, ¢ are
the desired maps.

Proof: ¢ is holomorphic, ¢(0) = (¥ o $(0))* = 0, and v is injective because of step
10 and v being a biholomorphism. v is J-holomorphic by step 11.

13. Q.E.D.
Proof: By step 12. O
Define

C(u) == CritPts(u)
S(u) = SelfInt(u)
={zeX|wex:
3U, a neighborhood of z:
4U,, a neighborhood of w:
u(z) = u(w) and w(U\{2}) N u(U\{w}) = 2}
CS(u) = C(u) US(u).

Exercise 10.3. Let (X, j) be a closed connected Riemann surface, (M, J) be an almost

complex manifold and w: (3,j) — (M, J) be a nonconstant J-holomorphic curve.
Then,

(i) There exists a closed connected Riemann surface ¥’, a holomorphic map ¢: 3 —
Y, and a J-holomorphic curve v: ¥ — M such that

e U =7VO ()07
o degyp > 1,
+ CS(v) is finite and v|cg(): L'\CS(v) — M is an embedding.

(ii) If (X", ¢',v") are also as in (ii), then there exists a biholomorphism ¢: ¥ — ¥”
such that v =v" o ¢ and ¢’ = ¢ o .
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Proof sketch: See figure 4 below.

$' . (TN CSWY) A

CS\“) Z T
&/2' Continuation
> O U .
5 O C :
Q - contimmation
@ @ oj “lsnesiw)

Figure 4: Proof sketch of exercise 10.3.

Solution:
1. (i):
Proof:
1.1. CS(u) is a finite set.

Proof:
1.1.1. C(u) is a finite set.

Proof: Since ¥ is compact, it suffices to show that it is discrete. One can
conclude that it is discrete using the coordinates given by the Micallef-
White theorem.

1.1.2. S(u) is a finite set.

Proof: By theorem E.1.2. in | |, which is a consequence of the Micallef-
White theorem.

1.1.3. Q.E.D.
Proof: By steps 1.1.1 and 1.1.2.
1.2. Let ¥ == u(X\ CS(u)) C M. Then,

(i) ¥’ is a smooth submanifold of M:;

(ii) Vz € 2\ CS(u): TyuyY' = du(2) - T.%;
(iti) Vp € X2 J(T,Y') C T,%.

Let jb, = J|y € C°(%, Homg (TY', TY)).
Proof:

1.2.1. ¥/ is a smooth submanifold of M;

1.2.2. V2 € B\ CS(u): Ty)X = du(z) - T.%;

Proof: ' '
T X ={%(0) | v: I — X' is C%°,4(0) = u(2)}
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1.3.

1.4.

1.5.

(0o p)(0) | 3 T —> £\ CS(w) is €, p(0) = 2
(Z) p0) | p: I — X\ CS(u) is C%, p(0) = 2}
u(z) - {p(0) | p: I — X\ CS(u) is €%, p(0) = z}
u(z) - T,X.
1.2.3. Vp € ¥': J,(T,%) C T,Y.
Proof: Tt suffices to assume that p € 3 and prove that .J,(T,%) C T,
There exists z € X such that u(z) = p.
J(T,X) = J,odu(z) - T,X
=du(z)oj(z) - T.X
Cdu(z) - T,X
=T,

1.2.4. Q.E.D.
Proof: Steps 1.2.1, 1.2.2 and 1.2.3.

Let ~ be the equivalence relation in CS(u) defined by Vz,w € CS(u): z ~ w if
and only if u(z) = u(w) and there exist U, C ¥\ CS(u) a neighborhood of z,
Uy C ¥\ CS(u) a neighborhood of z and ¢: U, — U, a biholomorphism such

that u|y, =uo¢ and U, N U, = &. Let CS(u) = CS(u)/ ~.

There exist maps u,: B1(0) — M and neighborhoods U, of z, for each z € ¥,
such that

(i) u, is J-holomorphic;

(i) u, is injective;

(iii) imu, = u(U,);

(iv) z ~w = u, = u, and u(U,) = u(Uy).
Let up) == u, and V};) := u(U.).

Proof: Let z € CS(u). Let
zeUC (%,7), U c(Ci), ¢:U—1U,

wz) e V.c(MJ), VcEJ), ¢:V-—V
be complex coordinate charts around z, u(z) such that w(U) C V. By the
Riemann mapping theorem, we can assume that U’ = B;(0). Let 4 be the local
representative of u with respect to these coordinates. By exercise 10.2, there
exist ¢: B. — B holomorphic and v: B — C" injective and J-holomorphic
such that @|p. = v o p. By the definition of ~, we may assume that if z ~ w
then the local representatives of u with respect to coordinate charts centred at
z and w coincide. Restricting e and changing the domain of v, B;(0), to a
smaller neighborhood of 0, U” C B;(0), we may assume that ¢ is surjective.
By the Riemann mapping theorem we may assume that U” = B;(0). Then,
u, =Y towvand U, = ¢"'B.(0) are as desired. The above proves that there
exist maps wu, satisfying (i), (ii), (iii) and (iv).

Let
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1.6.

1.7.

. (ii)

o — o . o -/
(I) : H[z}ECS(u) u[z]’Bl(O)\{O} : H[Z]ECS(U) B1 (0) \ {0} — E 9

o Y =3 Us (]_[[ G5t By (O)), where Ug means “gluing with respect to the

map ¢,

« Jj' be given by ji, on >, i on By(0).
Then (¥, j') is a compact Riemann surface.
Let v: ' — M be given by the inclusion isycy on Y, @ on H[z]EC/S\/(u) By (0).
Then,
(i) v: (¥',4) — (M, J) is pseudoholomorphic;
(ii) v|y, is an embedding.
Let ¢ = uls\cs@): 5\ CS(u) — 3. Then, there exists a unique ¢: 3 — ¥
continuous such that ¢[sm\csw) = ¢. ¢ also satisfies
(i) ¢ is holomorphic;

(ii) u=wvop.

Proof: It suffices to assume that for j = 1,2, (X}, ¢;,v;) is a set of data as in (i), and
prove that there exists a biholomorphism ¢: »; — 35 such that v; = vy 0 ¢ and

P2 =

¢ oy. Then, for j =1,2
Uj|2;\CS(vj)3 E;' \ CS(vj) — M

is an embedding. Consider the maps

Uy = /Ul‘E’l\(CS(v1)U’L)1_1(vg(CS(vg)))): 2\ (CS(vr) Uoy H(0a(CS(2)))) — M
Uy = U2|z;\(cswz)wgl(ul(CS(ul))))3 25\ (CS(v2) U vy (v1(CS(w1)))) — M.

Then, 05 o ©; is bijective, holomorphic and an embedding. There exists a unique
continuous map ¢: ¥j — ¥, that extends 05" o ;. The map ¢ is as desired.

. Q.E.D.
Proof: Steps 1 and 2. m
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11

Exercise sheet No. 11 - 10-07-2019

In this and the next exercise sheet we are going to prove positivity of intersections. We
follow the presentation in | ].

Exercise 11.1. Let (M, J) be an almost complex manifold, (3, j) be a closed Riemann
surface and u: > — M be a simple J-holomorphic curve. Then the set

7 =1{z€X | du(z) =0 or #u ' (u(2)) > 1}

= {z € ¥ | z is a noninjective point of u}

is finite.

Proof:

1. It suffices to show that
(i) There exists U a neighborhood of the diagonal A C ¥ x ¥ such that

V(z0,21) € U: (u(20) = u(z1) = 20 = 21).

(i) S(u) = {(z0,21) € £ x X | u(z0) = u(z1), 20 # 21} is a discrete set.
Proof:

1.1.

1.2.

1.3.

1.4.

1.5.

2. (i):

S(u) C L x S\ U.

Proof:
1.1.1. It suffices to assume that zp, 21 € X, u(z29) = u(z1), 20 = 21, and prove
that 29,21 ¢ U.

1.1.2. Assume by contradiction that (zg,21) € U.
1.1.3. Q.E.D.

Proof:
20 =21 |by (20,21) € U and definition of U]

# zo [by assumption in step 1.1.1].
¥ x ¥\ U is compact.
Proof: ¥ x ¥\ U is a closed subset of the compact topological space ¥ x X.
S(u) is finite.

Proof: By step 1.1 S(u) C ¥ x X, by step 1.2 ¥ x ¥\ U is compact, and by
assumption S(u) is discrete.

C'(u) is finite.

Proof: Lemma 2.4.1 in | ].

Q.E.D.

Proof: Z(u) = mS(u) U C(u). By steps 1.3 and 1.4 this is a finite set.

Proof:

2.1.

It suffices to show that Vzy € ¥: U, a neighborhood of z: u|y,: U, — M is
injective.
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2.2.

2.3.

2.4.

ggo.i].c'For each z € 3, let U, be a neighborhood of z such that u|y,: U, — M
is injective.

2.1.2. {U, x U,}.ex is an open covering of A.

2.1.3. Let U = U, U, x U..

2.1.4. Y(z0,21) € U: (u(z0) = u(z1) = 20 = 21).

Proof:
2.1.4.1. Tt suffices to assume that (2o, 21) € U, u(2p),u(21) and prove that
20 — %1-

21.4.2. 3z € X: (20,21) € U, x U,.
2.1.4.3. 20, %1-
Proof: Since u(zg) = u(z1), by step 2.1.4.2 zy, z; € U, and by step
2.1.1 ul|y, is injective.
9.1.4.4. Q.E.D.
Proof: Steps 2.1.4.1 and 2.1.4.3.
2.1.5. Q.E.D.
Proof: Step 2.1.4.
We may assume that du(zp) = 0.
Proof: If du(zy) # 0, the result follows by the inverse function theorem.
We may assume that zp = 0, ¥ = B1(0), M = C" and
u: Bl(O) — C"
20— (2%, 2%p(2)),
where k € N and p: C — C" ! is a polynomial such that p(0) = 0.
Proof: 1t suffices to show that there exists
u': By(0) — C"
20— (2,2Fp(2)),
where k € N and p: C — C"! is a polynomial such that p(0) = 0, such that if
the result holds for u/, i.e.:

« there exists a neighborhood U of 0 in By (0) such that «’'|y, is injective
then the result holds for u, i.e.:

o there exists a neighborhood Uy of 0 in ¥ such that u|y, is injective.
Such a u': B1(0) — C™ exists by the Micallef-White theorem.

There exists Uy a neighborhood of 0 such that u|y,: Uy — C™ is injective.

Proof-
2.4.1. Assume by contradiction that YU a neighborhood of 0: 3z, w € U: z # w
and u(z) = u(w).

2.4.2. There exist sequences (z,), (w,) in By(0) such that z, — 0, w, — 0,
2, # wy, u(z,) = u(w,), z, # 0, w, # 0.
Proof: By taking z,, w, to be z.w from step 2.4.1 associated to U =

73



B1,,(0).

2.4.3. Vv € N: 2% = w* and p(z,) = p(w,).
Proof: By u(z,) = u(w,) (step 2.4.2) and the polynomial representation
of u in step 2.3.

2.4.4. We may assume that 3¢ € C: ( # 1,¢(% = 1, w, = (2.

Proof: Let (, = w,/z,. Then ¢¥ = 1 and ¢, # 1. Since ¢*¥ = 1, then
¢, = e*™w/k for some I, = 0,...k —1. For some | =0, ...,k — 1, the set
{v € N |l =1,} is infinite. Take a subsequence corresponding to that
subset of N. Then (, is constant in that subsequence.

2.4.5. The polynomial z — p(z) — p({z) is zero.

Proof: Since p(z,) = p(w,) = p(Cz,), the polynomial z — p(2) — p(¢z) is
zero at an infinite number of distinct points.

2.4.6. Yz € B1(0): u(¢z) = u(z).

Proof-
u(Cz) = ("2, ¢2Fp(¢2))
= (2", 2"p(2))
= u(2).
2.4.7. Q.E.D.
Proof: By assumption, u is simple. By step 2.4.6, it is not simple. Con-
tradiction.
2.5. Q.E.D.
Proof: Steps 2.1 to 2.4.
3. (ii)
Proof:
3.1. It suffices to assume that zp, 21 € 3, 29 # 21, u(20) = u(z1) = z, and prove that

3.2.

there exists U a neighborhood of (zg, z1) in 3 x X such that UNS(u) = {(z0,21) }-
There exist C''-diffeomorphisms in the image

;. (Ui,Zi) — ((C,O),

v (W, z) — (C",0),
for i = 1,2, such that the maps u; = ¥ ouo ;" are of the form wy(z) =
2Fa + p(2)), ui(z) = 24(b + q(2)), p(0) = ¢q(0) = 0, where a,b € C"\ {0},
k,l € N, and p,q: C — C" are polynomials. There exist unitary matrices
Lo, Ly € C™™ such that

o Loug(z) = (2, 2%p'(2)), where p' is a polynomial such that p'(0) = 0;
0;

1

o Liui(z) = (2%, 2%¢'(2)), where ¢ is a polynomial such that ¢(0)
e Li'(Cx{0}) =L (C x {0}) = Lo = L.
Proof: By the Micallef~-White theorem.

3.3. It suffices to show that there exist Uj C ¢o(Uy) a neighborhood of 0 in C,

74



Ul C ¢1(Uy) a neighborhood of 0 in C such that for all z € U}, w € Uj
z #w,up(z) = w(w) = z=w = 0.

Proof: If such neighborhoods U}, U] exist, then U = ¢y (U}) x o7 (U}) is as
desired in step 3.1.

. Case: a,b are linearly independent.

Proof:
3.4.1. 36 > 0: VA, u € C: [Aa+ ub| > 6(|A\| + |p])-

Proof: a,b are linearly independent.
3.4.2. 3¢ > 0:Vz € B: |p(z)| < c|z] and |q(z)] < ¢|z].

Proof: Since p(0) = 0 and ¢(0) = 0, there exist unique polynomials p”, ¢”
such that p(z) = zp”(2) and ¢q(2) = 2¢"(2). Let

¢ = maxq max [p”(z)|, max |q"(z)|}.
z€B1(0) z€B1(0)

3.4.3. Vz,w € C: |ug(2) — uy(w)| > |2]%(6 — c|z]) + |w]*(6 — c|w]).
Proof:
lup(2) — uy (w)]
= |2"(a + p(2)) — w'(b + q(w))] [def. of ug,u; in step 3.2]
= |2"a — w'b + 2Fp(2) — wiq(w)|
> 20— wlb] — |2*p(z) — wlg(w)|
> 6|21 + Jwl') = ["p(2)| = [w'q(w)]  [step 3.4.1]
= 0]z]" + d|w]" — [[*|p()] — [w]'|q(w)]
> 0|2 + olw|' — |2|"c|z| — |w|'c|w] [step 3.4.2]
= [2*(6 = clz]) + [wl'(6 — clwl).
3.4.4. Vz,w € Bs/e(0): (Jug(z) —ui(w)| =0 <= 2z = w = 0).

Proof:
3.4.4.1. («):
Proof: z =0,w=0= ug(z) = 0, u;(w) = 0.
3.4.4.2. (=>):
Proof:
0 = [uo(=) — s (w)]
> 2|0 — c|z]) + |w|'(6 — clw|) [step 3.4.3]
>0
= 0= [2]"(6 — clz]) + w]'(6 — clwl)
= 0= [2]"(6 — ¢|2|) [each term is positive
0 = |w|'(§ — clw]|) and the sum is 0]
= 0=2zw [z, w € Bs;c(0)].
3.4.4.3. QE.D.
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3.5.

Proof: Steps 3.4.4.1 and 3.4.4.2.
3.4.5. Q.E.D.
Proof: By step 3.4.4, U) = U; = Bs/.(0) is the desired open set in step 3.3.
Case: a,b are linearly dependent.

Proof:
3.5.1. We may assume that a = b = (1,0) € C x C*! and that Vz: p(z),¢(z) €
{0} x C" 1

Proof: Since a,b are linearly dependent, the matrices Ly, L; from the
Micallef-White theorem in step 3.1 are equal. Replace ug,u; by v} = Lu;
and ¢ by ¢’ = L. If the result is true for u then it is true for u;.

3.5.2. Assume by contradiction that for all U] C ¢o(Up) a neighborhood of 0 in
C, Uy C 1(U1) a neighborhood of 0 in C, there exist z € Uj, w € U7 such
that

z # w,ug(z) = uy(w), (z # 0 or w # 0).
3.5.3. There exist sequences (z,), (w),) such that

o Yv: 2z, #0,w, #0;
o Yv:ug(z]) =u(w));

o Yu:z, #0,w, #0.
Proof: For each v € N, let z],,w, be the z,w associated to Uy = B,
Ui = By, from step 3.5.2. Since
(2 20p(2)) = uo(2,)

= w1 (w,)

= (w)), w)q(w),))
and since one of the numbers 2/, w! is nonzero, the other one must be
nonzero as well.

/
v

3.5.4. There exist sequences (z,), (w,) such that
o« Yv:z, #0,w, #0;
o Vr:up(2l) = up(wh);
o Yv:z, #0,w, #0.
Proof: For each v, let z, be such that 2/, = 2/ and let w, be such that

k _ ./
w w,.

3.5.5. Let m := kl. We may assume (after passing to a subsequence) that there
exists ¢ € C\ {1} such that (" =1 and w, = (z, for all v.
Proof: Let ¢, = w,/z,. Then (/" = 1 and (, # 1. Since (" = 1, then
¢, = e2™w/™ for some I, = 0,...m — 1. For some [ = 0,...,m — 1, the
set {v € N |l =1,} is infinite. Take a subsequence corresponding to that
subset of N. Then (, is constant in that subsequence.

3.5.6. The polynomial z — p(2!) — q(¢*2*) is zero.

Proof: Since p(zl) = q(wk) = p(¢*2F), this polynomial has infinitely many
Z€ros.
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3.5.7. Vz € B1(0): up(2") = up (¢F2F).

Proof:
ur (Ch2F) = (¢t ¢l gtk g(ck kY
= (M, 2Mp(H)
= wup(2).
3.5.8. Q.E.D.
Proof: By assumption, v is simple. By step 3.5.7, it is not simple. Con-
tradiction.
3.6. Q.E.D.
Proof: Steps 3.3, 3.4 and 3.5.
4. Q.E.D.
Proof: Steps 1, 2 and 3. n

Exercise 11.2. Let u: B;(0) — Cx C"~! be a polynomial that is not multiply covered
of the form u(z) = 2*(1, p(z)) for k € N and p(0) = 0. Let U C C be a neighborhood of
0and V C C, W C C™ be closed subsets containing 0 such that V' C U, w(V') C int(W),
W Nu(QU) = &. Assume that the sets U, V', W are balls centred at 0. Then, for all
€ > 0 there exists an immersion v: U — C" such that:

(1) U|U\u_1(W) = u]U\u—l(W) and U(U N U_1<W)) cWw;
(ii) v is holomorphic on V and [ju — v||cr < &;
(iii) #v~'(0) = k.

Proof:

1. For each 6 > 0, define
k—1

fs(z) =[] (z + o)

5=0
us(z) = f5(2)(1,p(2)).
2. There exists U; a neighborhood of 0 in C such that
Vee U \{0}: VA€ C: N =1, 0 #1 = p/(2) #0,p(2) # p(\2).

Proof: Uy = (p) "1 (C" '\ {0}) NN}, {z € C | p(z) # p(e*™*"/*2)} is such an open set.
3. V0 > 0: ug|y, is an immersion.

Proof:
3.1. It suffices to assume that z € Uy, and prove that uj(z) # 0.

3.2. Assume by contradiction that uj(z) = 0.
3.3. fi(z) =0 and fs(z) = 0.
Proof:



2)p'(2) =0
z2)=10
— f52 = 0.

3.4. Q.E.D.
Proof: By step 3.3, fi(z) = fs(z) = 0. By definition of fs in step 1, no zero of fs
has multiplicity 2. Contradiction.
V8 € (0,8):us ' (0)={jo | j=0,....k—1}.
Proof:
us ' (0) = {z € C | ug(2) = 0}
={z€C| fs(2)(1,p(2)) = 0}
={z€C| fs5() =0}
={jé|j=0,....k—1} [def. of fs5 in step 1].

. Let V’/ be an open set such that V' C V' C U and V' C int(u~*(W)).

Proof: Since
V cut(u(V))
C u”H(int(W)) [by hypothesis]
Cintu (W)  [u is continuous]
then V. C UNintu~!(W). Let V' be any open set such that V'C V' C UNint u™'(W).

. Let B: U — [0, 1] be a smooth function such that f(z) =1if z € V and §(z) =0 if

zeU\V".
For each § > 0, define vs5(z) = u(z) + 8(2)(us — u(z)).

8. 361 > 0: V¢ € (0,01): vs is an immersion.

10.

11.

12.

Proof: On Uy, vs = us which is an immersion. On U \ V', vs = w which is an
immersion. On V' — Uy, u is an immersion. Being an immersion is an open condition.
Choose ¢ so small that vs so C'-close to u that vy is still an immersion.

. Vo > 0: U5|U\u*1(W) = u|U\u*1(W)-

Proof: By definition of vs in step 7, def. of 3 in step 6, and since V' C u~ (W) (step
5, U\Nu ' (W)cU\V.

303 > 0: V8 € (0,83): vs(UNu (W) C W.

Proof: Because w(U Nu™Y(W)) C W, W Nu(dU) = & and § — v; is continuous.
VY > 0: vs is holomorphic in V.

Proof: In V| vs = us is holomorphic.

364 > 0: V9 € (0,04): ||vs — ullcr < e.
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13.

14.

Proof:
|vs — ullor = glelglva —u(z)| + glelglvfs —u'(z)]|
= ilelglﬁ(Z)(ua(z) —u(z))]
+ 21615!6’(2)(%(2) —u(2)) + B(2)(uz(2) —u'(2))].

365 > 0: V6 € (0,05): #v;(0) = k.

Proof:

v (0) ={z € U | vs(2)
={zeV ]u(2) =0tU{ze€eU\V'|uvs(2) =0}U{z € V'\V | vs(z) =0}
={zeV ]us(z) =0U{ze€U\V' |u(z) =0} U{z € V'\V | vs(2) =0}
=(Vn{is|i=0,....k=1})U(U\V'n{0})U{z € V\V | v5(2) = 0}
=(VNn{is |5 =0,....k=1}) Ufz € V'\V | v5(2) = 0}.

Choose d5 so small that {jo | j=0,....k =1} CV, {z € V'\V |vs(z) =0} = 2.

Q.E.D.

Proof: Let 6 = min{dy, d2, 93, 94, 95} /2. Let v := vs. By steps 8 to 13, v is the desired
map. O

0}
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12 Exercise sheet No. 12 - 11-07-2019

Let M be an oriented manifold, >, >; be oriented manifolds of dimension 2, and for j =
0,11let uj: ¥; — M be a smooth map. (zo, z1) € ¥ x> is an isolated intersection of
uo, uy if ug(z0) = wy1(21) and there exist Uy a neighborhood of zy and U; a neighborhood
of z; such that

o Uy, U; have compact closure,
o Ywy € Upy: Vw; € Up: (ug(wp) = uy(wi) = wy = 29, wy = 21).

Let (z9,21) € Xo X 31 be an isolated intersection of ug,u;. We define the local inter-
section number of ug, u; at (2g, z1), denoted ¢(ug, u1; 20, 21), as follows. Choose

o Uy, U; as before,

o« W C M compact, contractible,

e vo: Uy — M, vi: Uy — M
such that

o up(20) = ui(z1) € W,

W n UO(aU()) =W ﬂul(ﬁUl) = @,

° ’UO rh 'Ul,
e Vj=0,1: vj|Uj\u;1(W) = Uj|Uj\u;1(W)’

Then, ¢(ug, u1; 20, 21) == Vg - V1.
The previous definition is well posed, i.e. ¢(ug,u;20,21) does not depend on the
choice of date used to define it.

Exercise 12.1. Let (M, J) be an almost complex 4-dimensional manifold, (3, 7) be a
Riemann surface, and u: ¥ — M be a simple J-holomophic curve. Let (29,21) €
¥ x ¥\ A be such that u(zg) = u(z;). Then,

(i) (20,21) is an isolated self-intersection of u;
(i) e(u, u;20,21) > 1
(iii) o(u,u; 20,21) = 1 <= imdu(zp) ® im du(z1) = Ty0)M.

Solution:
L. (i):
Proof: By exercise 11.1 and u being simple.

2. For 7 = 0,1, there exist
o (?-coordinate charts ¢;: (U;, 2;) — (C,0),
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 unitary matrices L; € C?*2,
o a C'-coordinate chart W: (Wy, u(z)) — (C?,0)
such that
e Uy, Uy are disjoint,
o dV(u(z0))J(zo) = Jod¥(zp),
o Vi=0,1:u;:=Vouop;":¢(U;) — C?is a polynomial in the variable z,
e Vi=0,1:3k; € N: Ip;: C — C a polynomial with p;(0) = 0: Vz € ¢;(U;):
Liui(2) = (27, 2%p;(2)),
o LiH(C x{0}) =L (Cx{0}) <= Ly= L.
Proof: By the Micallef-White theorem.
. Case kg =1and k; = 1.

Proof:

3.1. Case dug(0) - C + duy (0) - C = C2.
Proof: In the definition of ¢(u, u; 29, 21) we can take v; = u;0¢; and W = {u(z)},
and compute ¢(u, u; 29, 21) = 1. Therefore (ii) and (iii) are true.

3.2. Case dug(0) - C + duy(0) - C #£ C2.
Proof:

3.2.1. We may assume that
1. LO - L1 == id(c,

2. Dbo = 07

3. dg: C — C polynomial : 3k > 2: ¢(0) # 0 and Vz € C: pi(z) =
2Fq(2).

Therefore, ug(2) = (2,0) and u1(2) = (z, 2%q(2)).

Proof:

—> uy(0), u}(0) are colinear
= Ly (C x {0}) = LT '(C x {0})
= Lo = L.
Therefore, 1 follows from composing u; with Ly and 2, 3 follow from com-
posing again with V' (z,w) = (z,w — zpo(z)).
3.2.2. Let
e« O C C be a neighborhood of 0 such that O C ¢;(U;) and Vz €
O: pi(z) # 0.
e 5: C — [0, 1] be smooth such that supp f C O and 3V a neighbor-
hood of 0 such that V' C O, 8|y =1,
e for cach e > 0, f.(2) = II}=5(z + je),
o for each e > 0, 95(2) = (2, (2" + B(2)(f-(2) — 27))q(2)).
3.2.3. Let
. W/ = {UO(Z())},
o vy = uly, € C°(Uy, M),
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o For each e > 0, 95 :== "L ovf o, € CH (U, M).
3.2.4. There exists an ¢ such that

o the data W’ vg,v] =: vy is as in the definition of local intersection
number.
o up-vi = k.
3.2.5. (ii):
Proof:

t(u,u; 29, 21) = vo - vy [by def. of ¢ and step 3.2.4]
=ug-v; [v9 = u|y, and homotopy invariance
=k
> 2.
3.2.6. (iii):
Proof: By assumption from step 3.2 and by step 3.2.5, both sides of the
equivalence are false, so the result is true.

3.2.7. Q.E.D.
3.3. Q.E.D.
. Case kg # 1 or ky # 1.
Proof:
4.1. Ir > 0:
o U:=B.(0) C ¢o(Uy) Nei(Uy)
o Ywg,wy € U\ {0}: ug(wp) # uy(wy).
Proof: u is simple.
4.2. Ir' > 0:
« W= By(0) C¢(Wo),
e WnNuy(oU) =@,
e Wnu(oU) =g@.
4.3. Yo =0,1: 3r; > 0:
. V= B,,(0),
o u;(V;) Cint(WW).
4.4. 4 > 0:
. infwer,wleU\V1|u0(w0) —uy(wr)] > 3e,
o inf o\ Vo ev|to(wo) — ur(wr)] > 3e.
Proof: By step 4.1, Ywg,w; € U \ {0}: uo(wg) # ui(wy). 0 € Vg, 0 € V7.
4.5. There exist vg: U — C", v1: U — C" such that

e v; is smooth,
e v; is an immersion,

Uz‘|U\u;1(W) = U|U\u;1(W)=

o v (UiNu*(W)) Cc W,
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4.6.

4.7.

4.8.

4.9.

 v; is holomorphic in V,
] ||U/l — UiHCl <eg,

« #{vi(0)} = ki,

4 Uom’vl.

Proof: By exercise 11.2, we can find some vg, v; satisfying all the properties
except transversality. We may deform vp, v; such that transversality is true as
well.

The data U} == ¢; ' (U), U, = ;" (U), W = ~Y{(W), v} = ¢~ o vy 0 vy,
v} =11 oy o satisfies the properties in the definition of .

Proof: By steps 4.1, 4.2 and 4.5.
Vo - U1 sz'kl-

Proof:
4.7.1. Ywg,wy € U: vo(wg) = v1(wy) = wy € Vo, w1 € V4.

Proof: Since v; is C-e-close to u;, and by the inequalities in step 4.4.
4.7.2. #{(wo,wl) ceUxU | 'UO(UJQ) = vl(wl)} 2 k’ok’l.
Proof: v; has k; branches through the origin.

4.7.3. Ywgy, w1 € U: <vo(w0) = v (w) = sign{dvo(wo)-%,dvo(wo)-a%,dvl(wl)-

%,dvl(wl) . a%} = )
Proof: vy th vy and by step 4.7.1, wg, wy are in V', and vy, v; are holomor-
phic in V.
4.7.4. Q.E.D.
v(u, w; zo, 21) > 1.
Proof:
L(u,u; 20, 21) = (™ o wg 0 ) - (YT 0wy 0 1)
= - vy
> koky
> 1

[step 4.6]

[invariance under diffeo.]
[step 4.7]

[assumption in step 4].
(ii):

Proof: By step 4.8.

4.10. (iii):

Proof: Since ky # 1 or k1 # 1, ug, u; are not transverse. Therefore, by step 4.8,
both sides of the equivalence are false, so the equivalence is true.

4.11. Q.E.D.
. Q.E.D.
Proof: By steps 3 and 4. n
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Exercise 12.2. Let (M, J) be an almost complex 4 dimensional manifold. For i =0, 1,
let u;: 3; — M be a simple J-holomorphic curve and A; = [u;] € Ho(M;Z). Let
Uy C 3o, U; C X be open subsets such that ug(Upy) # u1(Uy). Then,

(1) (5(U0,U1) = #{(ZQ,Zl) € EQ X 21 ’ Uo(ZQ) = Ul(Zl) S AO . Al}

(ii) 0(up,uy) = Ag - Ay if and only if

V20,21 € X (uo(zo) = u1(2z1) = im dug(2o) + im duy(21) = Tu(zO)M).

Solution:
1. u=wugUuy: Xg X —> M is simple.

Proof: Since ug, uy are simple and uo(Up) # uy(Uy).
2. Y(20,21) € ¥ x X\ A self intersection of u,
o (20,21) is isolated,
o w(u,u;29,21) > 1,
o u(u,u;20,21) = 1 <= imdu(z) + imdu(z1) = Tye) M.
Proof: By exercise 12.1.

3. (i):

Proof:
Ag- Ay = Z L(UO,U1; 20721)
u(z0)=u(21)
> > 1
u(z0)=u(21)
= 0(ug, up).
4. (ii):
Proof:
d(ug,u1) = Ag - Ay
< O(ug,uy) = Z t(ug, ut; 20, 21)

u(zo0)=u(z1)
< V(z0,21) € X X X1 8.t. up(20) = ui(21): t(ug, us; 20,21) =1

= V(20,21) € Yo x X1 s.t. ug(20) = wi(21): imdu(zo) + im du(zy) = Ty0)M.
5. Q.E.D.
Proof: Steps 3 and 4. m
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