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1 Exercise sheet No. 1
Exercise 1.1. Determine all possible topologies on the set of three elements X =
{a, b, c}.

Solution. Here is the complete list. Every topology in the same group is homeomorphic
to each other, and no topologies from different groups are homeomorphic:

(A) (Trivial Topology) O = {X,∅}.

(B) (Singles)

(B1) O = {X,∅, {a}}.
(B2) O = {X,∅, {b}}.
(B3) O = {X,∅, {c}}.

(C) (Doubles)

(C1) O = {X,∅, {a, b}}.
(C2) O = {X,∅, {a, c}}.
(C3) O = {X,∅, {b, c}}.

(D) (single-doubles non-disjoint)

(D1) O = {X,∅, {a}, {a, b}}.
(D2) O = {X,∅, {a}, {a, c}}.
(D3) O = {X,∅, {b}, {b, c}}.
(D4) O = {X,∅, {b}, {a, b}}.
(D5) O = {X,∅, {c}, {a, c}}.
(D6) O = {X,∅, {c}, {b, c}}.

(E) (single-doubles disjoint)

(E1) O = {X,∅, {a}, {b, c}}.
(E2) O = {X,∅, {b}, {a, c}}.
(E3) O = {X,∅, {c}, {a, b}}.

(F) (single-single-doubles)

(F1) O = {X,∅, {a}, {b}, {a, b}}.
(F2) O = {X,∅, {a}, {c}, {a, c}}.
(F3) O = {X,∅, {b}, {c}, {b, c}}.

(G) (single-double-doubles)

(G1) O = {X,∅, {a}, {a, b}, {a, c}}.
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(G2) O = {X,∅, {b}, {a, b}, {b, c}}.
(G3) O = {X,∅, {c}, {a, c}, {b, c}}.

(I) (single-single-double-doubles)

(I1) O = {X,∅, {a}, {b}, {a, b}, {b, c}}.
(I2) O = {X,∅, {a}, {b}, {a, b}, {a, c}}.
(I3) O = {X,∅, {a}, {c}, {a, b}, {a, c}}.
(I4) O = {X,∅, {a}, {c}, {a, c}, {b, c}}.
(I5) O = {X,∅, {b}, {c}, {b, c}, {a, c}}.
(I6) O = {X,∅, {b}, {c}, {a, b}, {b, c}}.

(J) (Power set) O = P(X) = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}.

Exercise 1.2. Assume that X is a set and d1, d2 are two distance functions for X.
Assume that there exists a constant c > 0 such that for every pair of points x, y ∈ X
the following string of inequalities holds

1
c
d1(x, y) ≤ d2(x, y) ≤ cd1(x, y). (1)

Show that Od1 = Od2.

Solution. Let c′ = 1
c
. Then, the inequalities (1) imply that

1
c′d2(x, y) ≤ d1(x, y) ≤ c′d2(x, y).

So, it suffices to show that Od1 ⊂ Od2 , because if we prove this, then this inclusion with
the roles of d1 and d2 switched tells us that Od2 ⊂ Od1 . To prove Od1 ⊂ Od2 , it suffices
to assume that U ∈ Od1 and prove that U ∈ Od2 . By definition of Od1 , for each x ∈ U
there exists an ϵx > 0 such that B1

ϵx
(x) = {y ∈ X | d1(x, y) < ϵx} ⊂ U . We claim

that U = ⋃
x∈U B

1
ϵx

(x). To show (⊂), let x ∈ U . Then x ∈ B1
ϵx

(x) ⊂ ⋃
y∈U B

1
ϵy

(x). To
show (⊃), let x ∈ ⋃y∈U B

1
ϵy

(y). Then there exists a y ∈ U such that x ∈ B1
ϵy

(y). Since
B1

ϵy
(y) ⊂ U , x ∈ U . So U = ⋃

x∈U B
1
ϵx

(x). To show that U ∈ Od2 , since Od2 is a topology
(therefore closed under arbitrary unions) it suffices to assume that x ∈ U and prove that
B1

ϵx
(x) ∈ Od2 . To show this, by definition of Od2 it suffices to assume that y ∈ B1

ϵx
(x) and

prove that there exists an ϵy > 0 such that B2
ϵy

(y) ⊂ B1
ϵx

(x). Define ϵ′
y := ϵx − d1(x, y).

Then since y ∈ B1
ϵx

(x), ϵ′
y > 0. We claim that B1

ϵ′
y
(y) ⊂ B1

ϵx
(x). To see this, it suffices to

assume that z ∈ B1
ϵ′

y
(y) and prove that d1(x, z) < ϵx.

d1(x, z) ≤ d1(x, y) + d1(y, z) [by the triangular inequality]
< d1(x, y) + ϵ′

y [z ∈ B1
ϵ′

y
(y)]

= ϵx [by definition of ϵ′
y].

Define ϵy = ϵ′
y/c. Then, ϵy > 0. We claim that B2

ϵy
(y) ⊂ B1

ϵ′
y
(y). To see this, it suffices

to assume that z ∈ B2
ϵy

(y) and prove that d1(z, y) < ϵ′
y.

d1(z, y) ≤ cd2(z, y) [by hypothesis of the exercise]
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< cϵy [z ∈ B2
ϵy

(y)]
= ϵ′

y [by definition of ϵy].

Using the previous two set inclusions,

B2
ϵy

(y) ⊂ B1
ϵ′

y
(y)

⊂ B1
ϵx

(x).

Exercise 1.3. Let X be a set and A ⊂ P(X) be a subset of the power set of X that
satisfies

(i) If I is any non-empty index set and Ai is closed for every i ∈ I, then ⋂i∈I Ai is also
closed.

(ii) If I is any non-empty finite index set and Ai is closed for every i ∈ I, then ⋃i∈I Ai

is also closed.

(iii) ∅, X ∈ A.
Define O = {U ⊂ X | U c ∈ A}. Show that O is a topology on X. (Hint: use De
Morgan’s laws)
Solution. O is closed under arbitrary unions: it suffices to assume that I is a non-empty
set, ∀i ∈ I : Ui ∈ O, and prove that ⋃i∈I Ui ∈ O. By definition of O, ∀i ∈ I : U c

i ∈ A.
Then, ⋃

i∈I

Ui ∈ O ⇐⇒
(⋃

i∈I

Ui

)c

∈ A [definition of O]

⇐⇒
⋂
i∈I

U c
i ∈ A [De Morgan’s laws]

⇐⇒ true [A satisfies (i)].

O is closed under finite intersections: it suffices to assume that I is a finite non-empty
set, ∀i ∈ I : Ui ∈ O, and prove that ⋂i∈I Ui ∈ O. By definition of O, ∀i ∈ I : U c

i ∈ A.
Then, ⋂

i∈I

Ui ∈ O ⇐⇒
(⋂

i∈I

Ui

)c

∈ A [definition of O]

⇐⇒
⋃
i∈I

U c
i ∈ A [De Morgan’s laws]

⇐⇒ true [A satisfies (ii)].

∅ ∈ O:

∅ ∈ O ⇐⇒ ∅c ∈ A [by definition of O]
⇐⇒ X ∈ A [∅c = X]
⇐⇒ true [A satisfies (iii)].

X ∈ O:

X ∈ O ⇐⇒ Xc ∈ A [by definition of O]
⇐⇒ ∅ ∈ A [Xc = ∅]
⇐⇒ true [A satisfies (iii)].
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Exercise 1.4. Consider the Euclidean distance function on Rn, which for two vectors
x, y ∈ Rn is defined by

d(x, y) = ∥x− y∥ =
√√√√ n∑

i=1
(xi − yi)2.

Show that the closure of the open ball is the closed ball. That is, for x ∈ Rn and r > 0
show that

Br(x) = {y ∈ Rn | d(x, y) ≤ r}.

Solution. Define Cr(x) := {y ∈ Rn | d(x, y) ≤ r}. We show that Br(x) ⊂ Cr(x). For
this, by definition of closure it suffices to show that Br(x) ⊂ Cr(x) and that Cr(x) is
closed in Rn. Clearly Br(x) ⊂ Cr(x). To show that Cr(x) is closed, it suffices to show
that Rn \ Cr(x) is open. For this, by definition of the topology of Rn as a metric space
it suffices to assume that y ∈ Rn \ Cr(x) and prove that there exists an ϵ > 0 such that
Bϵ(y) ⊂ Rn \ Cr(x). Define ϵ := d(x, y)− r. ϵ > 0, because

y ∈ Rn \ Cr(x)⇐⇒ y /∈ Cr(x)
⇐⇒ ¬(d(x, y) ≤ r)
⇐⇒ d(x, y) > r.

We now show that Bϵ(y) ⊂ Rn \ Cr(x). For this, it suffices to assume that z ∈ Bϵ(y)
(i.e. d(y, z) < ϵ) and prove that z ̸= Cr(x) (i.e. d(x, z) > r).

r < d(x, y)− d(y, z) [d(y, z) < ϵ and definition of ε]
≤ d(x, z) [by the triangle inequality].

We show that Cr(x) ⊂ Br(x). By definition of closure, it suffices to assume that F
is closed, Br(x) ⊂ F , and prove that Cr(x) ⊂ F . For this, it suffices to assume that
y ∈ Cr(x) and prove that y ∈ F . Assume by contradiction that y /∈ F . Then, since
y ∈ Rn\F which is open, and by definition of open set of the metric topology, there exists
ϵ′ > 0 such that Bϵ′(y) ⊂ Rn \ F . Let ϵ = min{ϵ′, ∥x− y∥}. Then, Bϵ(y) ⊂ Rn \ F and
ϵ < ∥x− y∥. Bϵ(y)∩Br(x) ⊂ (Rn \F )∩F = ∅. Define t := ϵ

2∥x−y∥ and z = y+ (x− y)t.
We will derive a contradiction by showing that z ∈ Bϵ(y)∩Br(x), which we have proven
is empty. z ∈ Bϵ(y):

d(y, z) = d(y, y + (x− y)t) [by definition of z]
= ∥−y + y + (x− y)t∥ [by definition of d]
= ∥t(x− y)∥
= |t|∥x− y∥ [∥·∥ is a norm]
= ϵ

2
< ϵ.

z ∈ Br(x):

d(x, z) = d(x, y + (x− y)t) [definition of z]
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= ∥−x+ y + xt− yt∥ [definition of d]
= ∥(t− 1)(x− y)∥
= |t− 1|∥x− y∥ [∥·∥ is a norm]
= | ϵ2 − ∥x− y∥| [by definition of t]

= ∥x− y∥ − ϵ

2 [∥x− y∥ > ϵ > ϵ/2]
≤ r − ϵ/2 [y ∈ Cr(x)]
< r.

So, z ∈ Bϵ(y) ∩Br(x) = ∅, which is a contradiction.
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2 Exercise sheet No. 2
Exercise 2.1. Let (X, d) be a metric space, x ∈ X and r > 0. Show that

Br(x) ⊂ {y ∈ X | d(x, y) ≤ r}.

Solution. In exercise 1.4 we showed that

Br(x) = {y ∈ X | d(x, y) ≤ r}

in the case X = Rn. The proof we gave for (⊃) uses the fact that the space is Rn (namely
the fact that it is a vector space), however the proof that we gave for (⊂) only uses the
fact that Rn is a metric space. So the same proof can be used here, with Rn replaced by
X:

Define Cr(x) := {y ∈ X | d(x, y) ≤ r}. We show that Br(x) ⊂ Cr(x). For this, by
definition of closure it suffices to show that Br(x) ⊂ Cr(x) and that Cr(x) is closed in X.
Clearly Br(x) ⊂ Cr(x). To show that Cr(x) is closed, it suffices to show that X \Cr(x) is
open. For this, by definition of the topology of X as a metric space it suffices to assume
that y ∈ X \ Cr(x) and prove that there exists an ϵ > 0 such that Bϵ(y) ⊂ X \ Cr(x).
Define ϵ := d(x, y)− r. ϵ > 0, because

y ∈ X \ Cr(x)⇐⇒ y /∈ Cr(x)
⇐⇒ ¬(d(x, y) ≤ r)
⇐⇒ d(x, y) > r.

We now show that Bϵ(y) ⊂ X \Cr(x). For this, it suffices to assume that z ∈ Bϵ(y) (i.e.
d(y, z) < ϵ) and prove that z ̸= Cr(x) (i.e. d(x, z) > r).

r < d(x, y)− d(y, z) [d(y, z) < ϵ and definition of ε]
≤ d(x, z) [by the triangle inequality].

Exercise 2.2. Find an example of a metric space (X, d) in which the inclusion from the
previous exercise is strict. That is, for which there exists x ∈ X and r > 0 such that

Br(x) ̸= {y ∈ X | d(x, y) ≤ r}.

Solution. Take any set X with more than one element, and consider the discrete metric
d on X defined by

d(x, y) =
{

0, if x = y
1, if x ̸= y

This is indeed a metric, as is easy to check. Moreover, B1(x) = B1(x) = {x} for every
x, but

{y ∈ X | d(x, y) ≤ 1} = X.

Exercise 2.3. Let (X,OX) and (Y,OY ) be topological spaces. Show that a map f : X →
Y is continuous if and only if the preimage under f of every closed set is closed.
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Solution. Assume that f is continuous, and let A ⊂ Y be closed. Then

f−1(A)c = f−1(Ac)

is open, which implies that f−1(A) is closed. The other direction is analogous.

Exercise 2.4. Let (X, dX) and (Y, dY ) be metric spaces. Let f : (X,OdX
) → (Y,OdY

)
be a map. Show that f is continuous if and only if for every ϵ > 0 and for every x ∈ X
there exists a δ = δ(x, ϵ) > 0 such that dX(x, y) < δ implies dY (f(x), f(y)) < ϵ.

Solution. (=⇒): It suffices to assume that ϵ > 0, x ∈ X and show that there exists
a δ = δ(x, ϵ) > 0 such that dX(x, y) < δ =⇒ dY (f(x), f(y)) < ϵ. By definition of
metric space topology on Y , the set Bϵ(f(x)) is open in Y . Since f is continuous,
f−1(Bϵ(f(x))) is open in X. Also f(x) ∈ Bϵ(f(x)). Therefore, by definition of the
metric space topology on X, there exists a δ > 0 such that Bδ(x) ⊂ f−1(Bϵ(f(x))). We
claim that δ is as desired. To show this, it suffices to assume that y ∈ X and prove that
dX(x, y) < δ =⇒ dY (f(x), f(y)) < ϵ.

dX(x, y) < δ ⇐⇒ y ∈ Bδ(x) [definition of ball]
=⇒ y ∈ f−1(Bϵ(f(x))) [by our choice of δ, Bδ(x) ⊂ f−1(Bϵ(f(x)))]
⇐⇒ f(y) ∈ Bϵ(f(x)) [definition of preimage]
⇐⇒ dY (f(x), f(y)) < ϵ [definition of ball].

(⇐=): By definition of continuous function, it suffices to assume that U ⊂ Y is open
and prove that f−1(U) ⊂ X is open. For this, by definition of open set in the metric
space topology, it suffices to assume that x ∈ f−1(U) and prove that there exists a δ > 0
such that Bδ(x) ⊂ f−1(U). Since f(x) ∈ U , U is open, and by definition of metric space
topology, there exists an ϵ > 0 such that Bϵ(f(x)) ⊂ U . By hypothesis, there exists
a δ > 0 such that dX(x, y) < δ =⇒ dY (f(x), f(y)) < ϵ for all y ∈ X. We claim that
Bδ(x) ⊂ f−1(U). Since

y ∈ Bδ(x)⇐⇒ dX(x, y) < δ [definition of ball]
=⇒ dY (f(x), f(y)) < ϵ [by our choice of δ]
⇐⇒ f(y) ∈ Bϵ(f(x)) [definition of ball]
⇐⇒ y ∈ f−1(Bϵ(f(x))) [definition of preimage],

Bδ(x) ⊂ f−1(Bϵ(f(x))). Then, since Bϵ(f(x)) ⊂ U ,

Bδ(x) ⊂ f−1(Bϵ(f(x)))
⊂ f−1(U).
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3 Exercise sheet No. 3
Exercise 3.1 (Subset topology). Let A ⊂ (X,OX) be any subset. Show that (A,OX |A)
is a topological space, and that the natural inclusion ι : A ↪→ X is continuous.

Solution. We have ∅ = A∩∅, A = A∩X, and so A,∅ ∈ OX |A. Let {Ui}i∈I be a family
of elements in OX |A, and write Ui = A ∩ Vi with Vi ∈ OX . Then

⋃
i∈I

Ui =
⋃
i∈I

(A ∩ Vi) = A ∩
(⋃

i∈I

Vi

)
,

which is an element of OX |A since ⋃i∈I Vi ∈ OX . Similarly, if I is finite, then

⋂
i∈I

Ui =
⋂
i∈I

(A ∩ Vi) = A ∩
(⋂

i∈I

Vi

)
,

which again lies in OX |A since ⋂i∈I Vi ∈ OX . This shows that OX |A is a topology.
To show that ι is continuous, take any open set V ⊂ X. Then ι−1(V ) = A∩V , which

is an element of OX |A by definition.

Exercise 3.2 (Quotient topology). Let (X,OX) be a topological space and ∼ an equiv-
alence relation on X. Show that (X/ ∼,OX/∼) is a topological space and the natural
projection p : X → X/ ∼ is continuous.

Solution. The proof is completely analogous to that of the previous exercise.
Denote Y = X/ ∼. We have ∅ = p−1(∅), X = p−1(Y ), and so Y,∅ ∈ OY . Let

{Ui}i∈I be a family of elements in OY . Then

p−1
(⋃

i∈I

Ui

)
=
⋃
i∈I

p−1(Ui),

which is an element of OX since p−1(Ui) ∈ OX for each i ∈ I and OX is a topology.
Similarly, if I is finite, then

p−1
(⋂

i∈I

Ui

)
=
⋂
i∈I

p−1(Ui),

which again lies in OX for similar reasons. This shows that OY is a topology.
The fact that p is continuous follows directly from the definition of the quotient

topology OY .

Exercise 3.3. Show that (R/Z,OR/Z) is compact and that (S1,OR2|S1) is Hausdorff.

Solution. We show that (R/Z,OR/Z) is compact. For this, consider f : [0, 1] −→ R/Z
given by f(x) = [x]. By Lemma 3.8, it suffices to show that [0, 1] is compact and that f
is continuous and surjective (i.e. it follows that f([0, 1]) = R/Z is compact).

[0, 1] is compact: It suffices to assume that A = {Ui}i∈I is an open covering of [0, 1]
and to prove that there is a finite subcover of A. Define

C = {y ∈ (0, 1] | [0, y] can be covered by finitely many elements of A}.
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It suffices to show that C ̸= ∅, which implies that C has a supremum c, and that c ∈ C.
We start then by showing that C ̸= ∅. Choose i ∈ I such that 0 ∈ Ui. Since Ui is open,
there exists an x > 0 such that [0, x) ∈ Ui. Then, x/2 ∈ C and C ̸= ∅. Let c = supC.
Assume by contradiction that c /∈ C. c ∈ [0, 1], so we can choose i ∈ I such that c ∈ Ui.
Since Ui is open, there exists a d ∈ [0, c) such that (d, c] ⊂ Ui. There exists a z ∈ C such
that z ∈ (d, c), since

¬(∃z ∈ C : z ∈ (d, c))⇐⇒ ∀z ∈ C : z /∈ (d, c)
⇐⇒ ∀z ∈ C : z ≤ d [z ∈ C =⇒ z ≤ c,

z ∈ C ∧ c /∈ C =⇒ z ̸= c]
=⇒ c ̸= supC [d is a smaller upper bound than c]
⇐⇒ false.

z ∈ C implies that there exist i1, . . . , in ∈ I such that [0, z] ⊂ ⋃n
j=1 Uij

. Also, [z, c] ⊂
(d, c] ⊂ Ui. So, [0, c] = [0, z] ∪ [z, c] ⊂

(⋃n
j=1 Uij

)
∪ Ui, which means that [0, c] can be

covered by a finitely many elements of A, so c ∈ C which contradicts c /∈ C. So c ∈ C.
f is continuous: consider the following commutative diagram:

[0, 1] R

R/Z

ι

f
p .

By the previous two exercises, p and ι are continuous, and f = pι.
f is surjective: it suffices to assume that [x] ∈ R/Z and to prove that there exists

a y ∈ [0, 1] such that f(y) = [x]. Define y = x − ⌊x⌋. Then, y ∈ [0, 1] and f(y) =
[x− ⌊x⌋] = [x].

We show that (S1,OR2|S1) is Hausdorff. We prove the more general fact that if
(X,OX) is a Hausdorff topological space and Y ⊂ X, then (Y,OX|Y ) is Hausdorff. For
this, it suffices to assume that x, y ∈ Y and to prove that there exist U, V ⊂ Y open
in Y such that x ∈ U , y ∈ V , and U ∩ V = ∅. Since X is Hausdorff, there exist
U ′, V ′ ⊂ X open in X such that x ∈ U ′, y ∈ V ′, and U ′ ∩ V ′ = ∅. Define U = Y ∩ U ′

and V = Y ∩V ′. By definition of subspace topology, U, V are open in Y . Since x, y ∈ Y ,
x ∈ U and y ∈ V . And U ∩ V = ∅, since U ′ ∩ V ′ = ∅.

Exercise 3.4. Show that (R/Z,OR/Z) is homeomorphic to (S1,OR2|S1).

Solution. By theorem 3.7, it suffices to show that there exists a map f : R/Z −→ S1

which is continuous and bijective. Define f by f([t]) = (cos(2πt), sin(2πt)) and define
f̃ : R −→ S1 by f̃(t) = (cos(2πt), sin(2πt)). Then, the following diagram commutes:

R S1

R/Z

p

f̃

f
.

11



f is well defined: it suffices to assume that t, t′ ∈ R, z ∈ Z, t′ = t + z and to prove
that (cos(2πt′), sin(2πt′)) = (cos(2πt), sin(2πt)). This is true:

(cos(2πt′), sin(2πt′)) = (cos(2πt+ 2πz), sin(2πt+ 2πz))
= (cos(2πt), sin(2πt)) [z ∈ Z].

f is injective: it suffices to assume that t, t′ ∈ R are such that (cos(2πt′), sin(2πt′)) =
(cos(2πt), sin(2πt)) and to prove that there exists a z ∈ Z such that t′ = t+ z.

(cos(2πt′), sin(2πt′)) = (cos(2πt), sin(2πt)) =⇒ e2πit = e2πit′

=⇒ e2πi(t−t′) = 1
=⇒ t− t′ ∈ Z.

f is surjective: for each p ∈ S1 there exists a t ∈ R such that p = (cos(2πt), sin(2πt)).
f is continuous: it suffices to assume that U ⊂ S1 is open and to prove that f−1(U)

is open.

f−1(U) is open⇐⇒ p−1f−1(U) is open [definition of quotient topology]
⇐⇒ (fp)−1(U) is open
⇐⇒ f̃−1(U) is open [commutative diagram]
⇐⇒ true [f̃ is continuous].

12



4 Exercise sheet No. 4
Exercise 4.1. Consider a non-empty product space X = ∏

λ∈Λ Xλ. Show that X is
Hausdorff if and only if Xλ is Hausdorff for every λ ∈ Λ.

Solution. (⇐=): Assume that Xλ is Hausdorff for every λ ∈ Λ, and let x = (xλ)λ∈Λ,
y = (yλ)λ∈Λ be distinct points in X. Let λ0 ∈ Λ be such that xλ0 ̸= yλ0 . Since Xλ0 is
Hausdorff, there exist open sets Uλ0 , Vλ0 in Xλ0 which respectively contain xλ0 and yλ0 ,
and which are disjoint. Define Uλ := Vλ := Xλ for λ ̸= λ0, and let

U :=
∏
λ∈Λ

Uλ, V :=
∏
λ∈Λ

Vλ

Then by definition U and V are elements in the natural basis for the product topology
in X, containing respectively x and y, and which are disjoint by construction. Then X
is Hausdorff.

(=⇒): For the other direction, assume that X is Hausdorff. Fix λ0 ∈ Λ, and consider
xλ0 ̸= yλ0 distinct points in Xλ0 . Choose an arbitrary point xλ = yλ ∈ Xλ for λ ̸= λ0
(here we use that Xλ ̸= ∅ for every λ), and consider x = (xλ)λ∈Λ, y = (yλ)λ∈Λ ∈ X.
Then x ̸= y by construction, and since X is Hausdorff, we may find open sets U and
V , satisfying x ∈ U , y ∈ V , U ∩ V = ∅. Since U and V are the union of elements in
the natural basis for the product topology, we may assume without loss of generality
that they are themselves elements in that basis, i.e. they are of the form U = ∏

λ∈Λ Uλ,
V = ∏

λ∈Λ Vλ with Uλ = Xλ except for finitely many λ, and similarly for Vλ. If zλ0 ∈
Uλ0 ∩ Vλ0 , then we may define z = (zλ)λ∈Λ, where zλ = xλ = yλ for λ ̸= λ0. By
construction z ∈ U ∩ V , which is absurd. It follows that Uλ0 ∩ Vλ0 = ∅, and so Xλ0 is
Hausdorff.

Exercise 4.2. Show that the canonical projection pλ : X = ∏
µ∈Λ Xµ → Xλ is continu-

ous.

Solution. Let Uλ ⊂ Xλ be an open set. Then

p−1
λ (Uλ) =

∏
µ∈Λ

Uµ,

where Uµ = Xµ for µ ̸= λ. This is an element in the natural basis for the product
topology, and therefore pλ is continuous.

Exercise 4.3. Show that a topological space (X,O) is Hausdorff if and only if there
does not exist a filter of X that converges to two different points.

Solution. (=⇒): It suffices to assume that F is a filter on X, x, y ∈ X, F converges to
x and F converges to y and to prove that x = y. Assume by contradiction that x ̸= y.
Then, since X is Hausdorff, there exist U, V ⊂ X open such that x ∈ U, y ∈ V and
U ∩ V = ∅. By definition of Ux, U ∈ Ux. Since F converges to x, Ux ⊂ F . So U ∈ F .
Analogously, V ∈ F . Since

∅ /∈ F [F is a filter]
∋ U ∩ V [U, V ∈ F and def. of filter]
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= ∅,

we obtain a contradiction.
(⇐=): Assume by contradiction that X is not Hausdorff. We derive a contradiction

by showing that there exists a filter F on X and points x, y ∈ X such that F converges
to x and F converges to y. Since X is not Hausdorff, there exist x, y ∈ X such that if
U is a neighbourhood of x and if V is a neighbourhood of y, then U ∩ V ̸= ∅. Define

F = {W ∈ P(X) | ∃U a neighbourhood of x :
∃V a neighbourhood of y : U ∩ V ⊂ W}.

We show that F is a filter.
F ̸= ∅: because X ∈ F .
A ∈ F and A ⊂ B =⇒ B ∈ F : Since A ∈ F , there exists U a neighbourhood of x

and there exists V a neighbourhood of y such that U ∩ V ⊂ A. Then, U ∩ V ⊂ A ⊂ B,
so B ∈ F .

A ∈ F and B ∈ F =⇒ A ∩ B ∈ F : Since A ∈ F , there exists U a neighbourhood
of x and there exists V a neighbourhood of y such that U ∩ V ⊂ A. Since B ∈ F ,
there exists U ′ a neighbourhood of x and there exists V ′ a neighbourhood of y such that
U ′ ∩ V ′ ⊂ B. Define U ′′ = U ∩ U ′ and V ′′ = V ∩ V ′. Then, x ∈ U ′′, y ∈ V ′′ and
A ∩B ⊃ (U ∩ V ) ∩ (U ′ ∩ V ′) = (U ∩ U ′) ∩ (V ∩ V ′) = U ′′ ∩ V ′′, so A ∩B ∈ F .

∅ /∈ F : Assume by contradiction ∅ ∈ F . Then there exist U a neighbourhood of x
in X and V a neighbourhood of y in X such that U ∩V ⊂ ∅. By the property of x and y
above (which comes from the fact that X is not Hausdorff), U ∩ V ̸= ∅. Contradiction.

So, we conclude that F is a filter.
We now show that F converges to x. It suffices to assume that A ∈ Ux and to prove

that A ∈ F . Since A ∈ Ux, there exists a U open such that x ∈ U ⊂ A. Define V := X,
which is a neighbourhood of y. Then, U ∩V = U ∩X = U ⊂ A, so A ∈ F . Analogously,
F converges to y. This is a contradiction, because x ̸= y and filters on X have unique
limits.

Exercise 4.4. Let X = ∏
λ∈Λ Xλ be a product of topological spaces and F be a filter

on X. Show that F converges to x = {xλ}λ∈Λ if and only if pλ(F) := {pλ(A) | A ∈ F}
converges to xλ for all λ ∈ Λ.

Solution. We start by showing that for all λ ∈ Λ, pλ(F) is a filter, so that we can talk
about it converging to a point.

pλ(F) ̸= ∅: Since F is a filter it is nonempty, so there exists A ∈ F . Then,
pλ(A) ∈ pλ(F).

A ∈ pλ(F) and A ⊂ B =⇒ B ∈ pλ(F): Since A ∈ pλ(F), there exists A′ ∈ F such
that A = pλ(A′). Define B′ = p−1

λ (B). Then, since pλ is surjective, B = pλ(B′). Since

A′ ⊂ p−1
λ (pλ(A′)) [fact about preimages]

= p−1
λ (A) [A = pλ(A′)]

⊂ p−1
λ (B) [A ⊂ B]

= B′ [def. B′],

A′ ⊂ B′. F is a filter and A′ ∈ F , so B′ ∈ F . Since B = pλ(B′), B ∈ pλ(F).
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A ∈ pλ(F) and B ∈ pλ(F) =⇒ A ∩ B ∈ pλ(F): Since A,B ∈ pλ(F), there exist
A′, B′ ∈ F such that pλ(A′) = A and pλ(B′) = B. Since F is a filter A′ ∩ B′ ∈ F .
Therefore pλ(A′ ∩B′) ∈ pλ(F). Since pλ(A′ ∩B′) ⊂ pλ(A′) ∩ pλ(B′) = A ∩B, and using
the previous property of filters that we just proved, A ∩B ∈ pλ(F).

∅ /∈ pλ(F): Assume by contradiction ∅ ∈ pλ(F). There exists A ∈ F such that
∅ = pλ(A). Since A ∈ F , A ̸= ∅. Therefore pλ(A) ̸= ∅ which is a contradiction.

(=⇒): It suffices to assume that λ ∈ Λ, that A ∈ Uxλ
(i.e. ∃U ⊂ Xλ open such

that xλ ∈ U ⊂ A) and to prove that A ∈ pλ(F) (i.e. ∃A′ ∈ F : A = pλ(A′)). Define
U ′ = p−1

λ (U) and A′ = p−1
λ (A). Since

xλ ∈ U =⇒ pλ(x) ∈ U
=⇒ x ∈ p−1

λ (U)
=⇒ x ∈ U ′,

and

U ⊂ A =⇒ p−1
λ (U) ⊂ p−1

λ (A)
=⇒ U ⊂ A,

then A′ ∈ Ux. Therefore A′ ∈ F . Since pλ is surjective, pλ(A′) = A.
(⇐=): It suffices to assume that A ∈ Ux and to prove that A ∈ F . Since A ∈ Ux,

there exists U ⊂ X open such that x ∈ U ⊂ A. By definition of the product topology,
there exists a family {Uλ}λ∈Λ, where Uλ ⊂ Xλ is open for each λ, such that

x ∈
∏
λ∈Λ

Uλ ⊂ U

and there exist λ1, . . . , λn such that for all λ ∈ Λ \ {λ1, . . . , λn} we have that Uλ = Xλ.
Then, ∏λ∈Λ Uλ = ⋂n

i=1 p
−1
λi

(Uλi
), because

y ∈
∏
λ∈Λ

Uλ ⇐⇒ ∀λ ∈ Λ: yλ ∈ Uλ

⇐⇒ ∀i = 1, . . . , n : yλi
∈ Uλi

⇐⇒ ∀i = 1, . . . , n : pλi
(y) ∈ Uλi

⇐⇒ ∀i = 1, . . . , n : y ∈ p−1
λi

(Uλi
)

⇐⇒ y ∈
n⋂

i=1
p−1

λi
(Uλi

).

By definition of Uxλ
, Uλ ∈ Uxλ

⊂ pλ(F) for every λ ∈ Λ. By definition of pλ(F), for
every λ ∈ Λ there exists an Aλ ∈ F such that Uλ = pλ(Aλ). By definition of filter,⋂n

i=1 Aλi
∈ F . Since

n⋂
i=1

Aλi
⊂

n⋂
i=1

p−1
λi

(Uλi
) [Aλ ⊂ p−1

λ (pλ(Aλ)) = p−1
λ (Uλ)]

=
∏
λ∈Λ

Uλ

⊂ U

⊂ A

and by definition of filter, A ∈ F .

15



Exercise 4.5. Let X be a set and x ∈ X. Show that

Fx = {A ∈ P(X) | x ∈ A}

is an ultrafilter on X.

Solution. We show that Fx is a filter. Fx ̸= ∅: Since x ∈ X, X ∈ Fx.
A ∈ Fx and A ⊂ B =⇒ B ∈ Fx: A ∈ Fx =⇒ x ∈ A =⇒ x ∈ B =⇒ B ∈ Fx.
A ∈ Fx and B ∈ Fx =⇒ A∩B ∈ Fx: A ∈ Fx ∧B ∈ Fx ⇐⇒ x ∈ A∧ x ∈ B ⇐⇒ x ∈

A ∩B ⇐⇒ A ∩B ∈ Fx.
∅ /∈ Fx: ∅ ∈ Fx =⇒ x ∈ ∅⇐⇒ false.
So, Fx is a filter.
We show that Fx is an ultrafilter. It suffices to assume that F is a filter, F is finer

than Fx, and to prove that F = Fx. Since F is finer than Fx, Fx ⊂ F . It remains to
show the opposite inclusion. For this, it suffices to assume that A ∈ F and to prove that
x ∈ A. Assume by contradiction that x /∈ A. Then, X \ A ∈ F , because

x /∈ A⇐⇒ x ∈ X \ A
⇐⇒ X \ A ∈ Fx

=⇒ X \ A ∈ F [Fx ⊂ F ].

Now ∅ = X ∩ (X \ A) ∈ F because X,X \ A ∈ F . But since F is a filter ∅ /∈ F .
Contradiction.
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5 Exercise sheet No. 5
Let Λ be a nonempty set. For each λ ∈ Λ, let Xλ be a nonempty set. Define

X =
{

(L, z)
∣∣∣∣ L ⊆ Λ, z ∈

∏
λ∈L

Xλ

}
.

Exercise 5.1. Show that X is nonempty.

Solution. Since Λ is nonempty, we can choose λ ∈ Λ. Since Xλ is nonempty, we can
choose z ∈ Xλ. Define L = {λ} (L is a set with one element). Then, (L, z) ∈ X , because
L = {λ} ⊆ Λ and ∏

λ′∈L

Xλ′ =
∏

λ′∈{λ}
Xλ′

= Xλ

∋ z.

For L0 ⊆ L1 ⊆ Λ, define the canonical projection pL1,L0 : ∏λ∈L1 Xλ −→
∏

λ∈L0 Xλ by
pL1,L0((xλ)λ∈L1) = (xλ)λ∈L0 .

Define a binary relation on X by declaring (L1, z1) ≥ (L0, z0) if and only if L1 ⊇ L0
and z0 = pL1,L0z1.

Exercise 5.2. Show that ≥ is a partial order.

Solution. Step 1: we show that if L ⊆ Λ, then pL,L = id : ∏λ∈L Xλ −→
∏

λ∈L Xλ.
This is because if (xλ)λ∈L ∈

∏
λ∈L Xλ, then by definition of the canonical projection

pL,L((xλ)λ∈L) = (xλ)λ∈L.
Step 2: we show that if L0 ⊆ L1 ⊆ L2 ⊆ Λ, then pL1,L0pL2,L1 = pL2,L0 . For this,

notice that if (xλ)λ∈L2 , then

pL1,L0pL2,L1((xλ)λ∈L2) = pL1,L0((xλ)λ∈L1) [def. pL2,L1 ]
= (xλ)λ∈L0 [def. pL1,L0 ]
= pL2,L0((xλ)λ∈L2) [def. pL2,L0 ].

Step 3: ≥ is reflexive. It suffices to assume that (L, z) ∈ X and to prove that
(L, z) ≥ (L, z). This is true because L ⊇ L and (by step 1) z = pL,Lz.

Step 4: ≥ is transitive. It suffices to assume that (L0, z0), (L1, z1), (L2, z2) ∈ X ,
(L2, z2) ≥ (L1, z1) ≥ (L0, z0), and to prove that (L2, z2) ≥ (L0, z0). For this, we show
that L2 ⊇ L0,

L2 ⊇ L1 [(L2, z2) ≥ (L1, z1)]
⊇ L0 [(L1, z1) ≥ (L0, z0)],

and that z0 = pL2,L0z2,

pL2,L0z2 = pL1,L0pL2,L1z2 [by step 2]
= pL1,L0z1 [(L2, z2) ≥ (L1, z1)]
= z0 [(L1, z1) ≥ (L0, z0)].
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Step 5: ≥ is antisymmetric. If suffices to assume that (L0, z0), (L1, z1) ∈ X , (L0, z0) ≥
(L1, z1) and (L1, z1) ≥ (L0, z0), and to prove that (L0, z0) = (L1, z1). To show that
L0 = L1, notice that L0 ⊇ L1 (because (L0, z0) ≥ (L1, z1)) and L1 ⊇ L0 (because
(L1, z1) ≥ (L0, z0)). To show that z0 = z1, notice that

z0 = pL1,L0z1 [(L1, z1) ≥ (L0, z0)]
= pL1,L1z1 [L1 = L0]
= z1 [by step 1].

Exercise 5.3. Let H ⊆ X be a totally ordered subset. Show that H admits an upper
bound in X .

Solution. If H is empty, then the result is true, because any element of X is an upper
bound. So we may assume that H is not empty. Let L = ⋃

(L0,z0)∈H L0 ⊆ Λ, and define
z ∈ ∏λ∈L Xλ via zλ = (z0)λ, if λ ∈ L0 with (L0, z0) ∈ H. The fact that this is well-
defined follows from the condition that H is totally ordered: if λ also satisfies λ ∈ L1, and
(L1, z1) ∈ H, then assume up to changing roles that L0 ⊆ L1, z0 = pL1,L0z1. But then
(z0)λ = (z1)λ. This shows that (L, z) ∈ X , and by definition we have (L, z) ≥ (L0, z0)
for every (L0, z0) ∈ H. This means that (L, z) is an upper bound for H in X .

Exercise 5.4. Let (L, z) be a maximal element in X , which exists by Zorn’s Lemma.
Show that L = Λ.

Solution. Assume by contradiction that L ⊊ Λ. Take λ ∈ Λ\L, and zλ ∈ Xλ (here we
use that Xλ ̸= ∅). Define L′ = L ∪ {λ}, and z′ ∈ ∏λ′∈L′ Xλ′ via z′

λ′ = zλ′ if λ′ ̸= λ,
z′

λ = zλ. But then (L′, z′) ∈ X , (L′, z′) > (L, z), which is a contradiction since (L, z) is
maximal.
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6 Exercise sheet No. 6
Exercise 6.1. Let (X, d) be a metric space. Show that d′ : X ×X → R, defined by

d′(x, y) = d(x, y)
1 + d(x, y) , x, y ∈ X,

is also a metric.

Solution. Non-negativity of d′, as well as its symmetry and the fact that it vanishes
precisely when x = y, all follow immediately from the corresponding property for d. We
therefore check the triangle inequality.

Consider the function
f : [0,+∞)→ [0,+∞)

defined by
f(t) = t

1 + t
.

Note that d′ = f ◦ d. We have
f ′ = 1

(1 + t)2 ,

which is everywhere strictly positive, and so f is strictly increasing.
Let x, y, z ∈ X. Combining this fact with the triangular inequality of d, we have

d′(x, y) = f(d(x, y))
≤ f(d(x, z) + d(z, y))

= d(x, z) + d(z, y)
1 + d(x, z) + d(z, y)

≤ f(d(x, z)) + f(d(z, y))
= d′(x, z) + d′(z, y).

(2)

Exercise 6.2. Show that d and d′ induce the same topology.

Solution. First, we prove the following general fact:
Fact: A metric topology is characterized by all its convergent sequences.
This means that, if d1 and d2 are two metrics on X, then they induce the same

topology on X if and only if they have the same convergent sequences (i.e. if (xn)n∈N
converges in Od1 to x ∈ X, then it also converges in Od2 to x ∈ X, and viceversa).

Proof of Fact. We prove that the closed sets for Od1 are the same as the closed sets
for Od2 , which by symmetry implies Od1 = Od2 .

Let C be closed for Od1 , and let x be a limit point of C for Od2 . Since the topology is
metric, there exists a sequence (xn)n∈N ⊂ C which converges to x in Od2 . By assumption,
(xn)n∈N ⊂ C also converges to x in Od1 . But since C is closed for Od1 , we have x ∈ C.
Then C contains all its limit points with respect to Od2 , and so it is closed with respect
to Od2 . □
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Using the above fact, it suffices to show that d and d′ have the same convergent
sequences. Assume that (xn)n∈N converges in Od to x ∈ X. Then

d′(xn, x) = d(xn, x)
1 + d(xn, x) ≤ d(xn, x)→ 0,

as n→ +∞, and so xn converges inOd′ to x. Reciprocally, assume that (xn)n∈N converges
in Od′ to x ∈ X. This implies that d(xn, x) is bounded: indeed, if it is not, there exists
a subsequence xnk

for which d(xnk
, x) → +∞ as k → +∞. But then d(xnk

, x) → 1 as
k → +∞, which is absurd. Then we may find M > 0 such that d(xn, x) ≤ M for all n.
Moreover,

d(xn, x)
1 +M

≤ d(xn, x)
1 + d(xn, x) = d′(xn, x)→ 0,

as n → +∞. This implies that (xn)n∈N converges in Od to x ∈ X, and finishes the
proof.

Exercise 6.3. For each i ∈ N, let (Xi, di) be a metric space. For each i define a metric
d′

i as in exercise 6.1. Let X = ∏
i∈NXi. Define

d : X ×X −→ R

for x = (xi)i∈N ∈ X and y = (yi)i∈N ∈ X by

d(x, y) =
∞∑

i=1

1
2i
d′

i(xi, yi).

Show that d is well defined, that is, that the sum above converges and that d defines a
metric on X.

Solution. We show that the sum d(x, y) = ∑∞
i=1

1
2id

′
i(xi, yi) converges. For this, note that

1
2i
d′

i(xi, yi) = 1
2i

di(xi, yi)
1 + di(xi, yi)

≤ 1
2i
,

so each term of this series is smaller than the corresponding term of a geometric series.
Since the geometric series converges, the series defining d(x, y) converges as well.

We show that d is a metric.
d is a real valued non-negative function: d is a convergent sum of positive terms.
d is non-degenerate, i.e. ∀x, y ∈ X : d(x, y) = 0⇐⇒ x = y:

d(x, y) = 0⇐⇒
∞∑

i=1
d′

i(xi, yi) = 0 [def. d(x, y)]

⇐⇒ ∀i ∈ N : d′
i(xi, yi) = 0 [sum of > 0 terms is 0 iff each term is 0]

⇐⇒ ∀i ∈ N : xi = yi [d′
i is a metric on Xi]

⇐⇒ x = y [def. of ∏∞
i=1 Xi].

20



d is symmetric, i.e. ∀x, y ∈ X : d(x, y) = d(y, x):

d(x, y) =
∞∑

i=1

1
2i
d′

i(xi, yi) [def. d(x, y)]

=
∞∑

i=1

1
2i
d′

i(yi, xi) [d′
i(yi, xi) is symmetric]

= d(y, x) [def. d(y, x)].

d satisfies the triangle inequality, i.e. ∀x, y, z ∈ X : d(x, z) ≤ d(x, y) + d(y, z):

d(x, z) =
∞∑

i=1

1
2i
d′

i(xi, zi) [def. of d(x, z)]

≤
∞∑

i=1

1
2i

(d′
i(xi, yi) + d′

i(yi, zi)) [d′
i satisfies the triangle inequality]

=
∞∑

i=1

1
2i
d′

i(xi, yi) +
∞∑

i=1

1
2i
d′

i(yi, zi)

= d(x, y) + d(y, z) [def. of d(x, y)].

Exercise 6.4. Let d be the metric on X = ∏
i∈NX from exercise 6.3. Show that the

topology Od on X induced from d coincides with the product topology.

Solution. Denote by B the basis of the product topology on X. Denote by OB the
product topology on X. We need to show that Od = OB.

We show that Od ⊂ OB.
Step 1: we show that it suffices to assume that x ∈ X, r > 0, y ∈ Br(x), and prove

that there exists By ∈ B such that y ∈ By ⊂ Br(x). For this, let U be open in Od. Then,
for each x ∈ U there exists rx > 0 such that x ∈ Brx(x) ⊂ U . Then,

U =
⋃

x∈U

Brx(x) [∀x ∈ U : x ∈ Brx(x) ⊂ U ]

=
⋃

x∈U

⋃
y∈Brx (x)

By [∀y ∈ Brx(x) : y ∈ By ⊂ Brx(x)].

Each By is in OB by definition of OB, and since OB is a topology U is also in OB.
Step 2: we define By. Define ε = r − d(x, y) > 0. There exists an N ∈ N such

that ∑∞
i=N+1

1
2i < ε

2 , since the sum ∑∞
i=1

1
2i converges. There exists an r′ such that∑N

i=1
1
2i

r′

1+r′ < ε, because the map (−1,+∞) −→ R given by x 7−→ x
1+x

is smooth,
strictly increasing, and maps 0 to 0. Then define Uy

i = Br′(yi) if i ≤ N and Uy
i = Xi if

i > N . Define By = ∏
i∈N U

y
i . Then, by definition of B, B ∈ B.

Step 3: we show that y ∈ B ⊂ Br(x). It’s immediate that y ∈ B. For B ⊂ Br(x),
it suffices to assume that z ∈ B and to prove that z ∈ Br(x). Notice that since the
function x 7−→ x

1+x
is strictly increasing and ∀i ≤ N : di(yi, zi) < r′, we have that

∀i ≤ N : di(yi,zi)
1+di(yi,zi) <

r′

1+r′ .

d(x, z) ≤ d(x, y) + d(y, z)

= d(x, y) +
∞∑

i=1

1
2i

di(yi, zi)
1 + di(yi, zi)
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= d(x, y) +
N∑

i=1

1
2i

di(yi, zi)
1 + di(yi, zi)

+
∞∑

i=N+1

1
2i

di(yi, zi)
1 + di(yi, zi)

≤ d(x, y) +
N∑

i=1

1
2i

di(yi, zi)
1 + di(yi, zi)

+
∞∑

i=N+1

1
2i

< d(x, y) +
N∑

i=1

1
2i

r′

1 + r′ +
∞∑

i=N+1

1
2i

< d(x, y) + ε

2 + ε

2
= d(x, y) + ε

= r.

We show that Od ⊃ OB.
Step 1: we show that it suffices to assume that B ∈ B, x ∈ B, and to prove that

there exists rx > 0 such that Brx(x) ⊂ B. For this, let U be open in X with respect to
the OB. Then, there exists a collection {Bj}j∈I ⊂ B such that U = ⋃

j∈J Bj.

U =
⋃
j∈J

Bj

=
⋃
j∈J

⋃
x∈Bj

Brx(x) [∀x ∈ B : x ∈ Brx(x) ⊂ B].

Each Brx(x) is in Od by definition of Od, and since Od is a topology U is also in Od.
Step 2: we define rx. By definition of basis for the product topology, there exists

{Ui}i∈N such that Ui ⊂ Xi is open, Ui ̸= Xi only for finitely many i’s, and B = ∏
i∈N Ui.

There exists an N ∈ N such that for all i > N we have Ui = Xi. For each i ≤ N , since
each Ui is open and Xi is a metric space, there exists ri > 0 such that Bri

(xi) ⊂ Ui.
Define r′ = min{r1, . . . , rN} and rx = 1

2N
r′

1+r′ .
Step 3: we show that Brx(x) ⊂ B. For this, it suffices to assume that y ∈ Brx(x) and

to prove y ∈ B. For this, it suffices to show ∀i = 1, . . . , N : yi ∈ Br′(xi), because then
∀i = 1, . . . , N : yi ∈ Br′(xi) ⊂ Bri

(xi) ⊂ Ui.

y ∈ Brx(x)⇐⇒ d(x, y) < rx

⇐⇒
∞∑

i=1

1
2i

di(xi, yi)
1 + di(xi, yi)

< rx

=⇒ ∀i = 1, . . . , N : di(xi, yi)
1 + di(xi, yi)

< 2irx ≤ 2Nrx = r′

1 + r′

=⇒ ∀i = 1, . . . , N : di(xi, yi) < r′,

where the last implication follows because (−1,+∞) −→ (−∞, 1), x 7−→ x
1+x

is a strictly
increasing smooth bijection.
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7 Exercise sheet No. 7
Exercise 7.1. Show that homotopy is an equivalence relation on the set of continuous
functions from X to Y .

Solution. For f, g : X −→ Y continuous, write f ≃ g when f is homotopic to g, i.e. there
exists H : [0, 1]×X −→ Y continuous such that ∀x ∈ X : H(0, x) = f(x), H(1, x) = g(x).

Reflexive: it suffices to assume that f : X −→ Y is continuous, and prove that f is
homotopic to f . Define H : [0, 1]×X −→ Y by H(t, x) = f(x). Then, H is continuous
and ∀x ∈ X : H(0, x) = f(x), H(1, x) = f(x). By definition of homotopy, f is homotopic
to f .

Symmetric: it suffices to assume that f, g : X −→ Y are continuous, that f ≃ g, and
to prove that g ≃ f . Since f ≃ g, there exists H ′ : [0, 1] × X −→ Y continuous such
that ∀x ∈ X : H ′(0, x) = f(x), H ′(1, x) = g(x). Define H : [0, 1]×X −→ Y by H(t, x) =
H ′(1 − t, x). Then H is continuous and ∀x ∈ X : H(0, x) = g(x), H(1, x) = f(x). By
definition of homotopic, g ≃ f .

Transitive: it suffices to assume that f, g, h : X −→ Y are continuous, that f ≃ g
and g ≃ h, and to prove that f ≃ h. Since f ≃ g, there exists H1 : [0, 1] × X −→ Y
continuous such that ∀x ∈ X : H1(0, x) = f(x), H1(1, x) = g(x). Since g ≃ h, there exists
H2 : [0, 1] × X −→ Y continuous such that ∀x ∈ X : H2(0, x) = g(x), H2(1, x) = h(x).
Define H : [0, 1]×X −→ Y by

H(t, x) =
H1(2t, x) if t ∈ [0, 1/2)
H2(2t− 1, x) if t ∈ [1/2, 1].

Then, H is continuous, since for t = 1/2 we have H1(21/2, x) = H1(1, x) = H2(0, x) =
H2(1 − 21/2, x). Also, ∀x ∈ X : H(0, x) = f(x), H(1, x) = h(x). By definition of
homotopy, f ≃ h.

Exercise 7.2. Let (X,OX), (Y,OY ) and (Z,OZ) be three topological spaces and let
f0, f1 : X −→ Y and g0, g1 : Y −→ Z be two pairs of homotopic continuous functions.
Show that g0f0 and g1f1 are homotopic continuous functions from X to Z.

Solution. Since f0 ≃ f1, there exists F : [0, 1] × X −→ Y continuous such that ∀x ∈
X : F (0, x) = f0(x), F (1, x) = f1(x). Since g0 ≃ g1, there exists G : [0, 1] × X −→ Y
continuous such that ∀x ∈ X : G(0, x) = g0(x), G(1, x) = g1(x).

We show that g0f0 ≃ g0f1. For this, define H : [0, 1] × X −→ Z by H(t, x) =
g0(F (t, x)). Then, H is continuous and ∀x ∈ X : H(0, x) = g0f0(x), H(1, x) = g0f1(x).
By definition of homotopic, g0f0 ≃ g0f1.

We show that g0f1 ≃ g1f1. For this, define I : [0, 1]×X −→ Z by I(t, x) = G(t, f1(x)).
Then, I is continuous and ∀x ∈ X : I(0, x) = g0f1(x), I(1, x) = g1f1(x). By definition of
homotopic, g0f1 ≃ g1f1.

So, g0f0 ≃ g0f1 ≃ g1f1. Since ≃ is an equivalence relation, g0f0 ≃ g1f1.

Exercise 7.3. Show that the notion of homotopy equivalence defines an equivalence
relation on the set of topological spaces.

Solution. We write X ≃ Y to denote that X is homotopy equivalent to Y .

23



Reflexive: X ≃ X is homotopy equivalent to itself, since if f = g = id : X → X is
the identity map, then f ◦ g = g ◦ f = id, which is homotopic to id via the constant
homotopy H : [0, 1]×X → X, H(·, x) = x.

Symmetric: X ≃ Y means that there exist f : X → Y and g : Y → X such that
f ◦ g ≃ idY , g ◦ f ≃ idX . This definition is clearly symmetric in X and Y .

Transitive: If X ≃ Y , Y ≃ Z, let f : X → Y , g : Y → X, k : Y → Z, l : Z → Y , such
that f ◦ g ≃ idY , g ◦ f ≃ idX , k ◦ l ≃ idZ , l ◦ k ≃ idY . Then

(k ◦ f) ◦ (g ◦ l) = k ◦ (f ◦ g) ◦ l ≃ k ◦ idY ◦ l = k ◦ l ≃ idZ .

Similarly one checks that (g ◦ l) ◦ (k ◦ f) ≃ idX .
Note that we are using the general fact that if a ≃ b, then a ◦ c ≃ b ◦ c for arbitrary

maps a, b, c, and similarly for composition on the left. This is proved as follows: if H is
a homotopy between a and b, then H ◦ c is a homotopy between a ◦ c and b ◦ c.

Exercise 7.4. Compute the zero-th Betti number b0(X) in the case where X is an
arbitrary set with the discrete topology, or with the trivial topology.

Solution. We consider the case of the discrete topology, where OX = P (X) is the pow-
erset of X. In this case, we prove:

Claim: A map γ : Y → X from a compact and connected space Y is continuous if
and only if it is constant.

Indeed, we have
Y =

⋃
x∈γ(Y )

γ−1({x}).

Since {x} is open for all x ∈ X and γ is continuous, we have γ−1({x}) is open for all
x ∈ γ(Y ). Using compactness of Y , we find finitely many x1, . . . , xn ∈ γ(Y ) ⊂ X for
which

Y =
n⋃

i=1
γ−1({xi}).

Consider
I = {i > 1 : γ−1({x1}) ∩ γ−1({xi}) ̸= ∅}.

Note that xi = x1 for every i ∈ I, by definition of I. We now reorder all indices i > 1,
so that I = {1, . . . , k}, and i /∈ I for i > k. If k = n, we are done, since xi = x1 for all
i ∈ I and so ⋃k

i=1 γ
−1({xi}) = γ−1({x1}). But if k < n, then

Y = γ−1({x1})
⋃
i>k

γ−1({xi})

is the disjoint union of two open sets, which contradicts the assumption that Y is con-
nected. This proves the claim.

Setting Y = [0, 1] in the above claim, which is compact and connected, we obtain
that the path connected components of X are of the form {x} for x ∈ X, i.e. X = X/ ∼.
This implies that b0(X) = #X is the cardinality of X.

In the case of the trivial topology OX = {X,∅}, we prove:
Claim: Every map γ : Y → X is continuous for any topological space Y .
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Indeed, an open set U ⊂ X is either U = X (and so γ−1(U) = Y is open) or U = ∅
(and so γ−1(U) = ∅ is also open). This proves the second claim.

Setting Y = [0, 1], this implies that there is only one path component in X, since for
x, y ∈ X we can just take any map γ : [0, 1] → X with γ(0) = x and γ(1) = y, and so
x ∼ y. This means that X/ ∼ contains a single point, and so b0(X) = 1.
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8 Exercise sheet No. 8
Exercise 8.1. Compute the zeroth Betti number of Sn for all n ∈ N0.

Solution. We show that b0(S0) = 2. Notice that S0 = {x ∈ R|∥x∥ = 1} = {−1, 1}.
Denote by C1 the path component of S0 containing 1. Then, C = {1} or C = {−1, 1}.
C equals {−1, 1} if and only if there exists a continuous map γ : [0, 1] −→ {−1, 1} such
that γ(0) = 1 and γ(1) = −1, which is false. So C1 = {1}. By a similar argument, the
path component of S0 containing −1 is C−1. Then,

b0(S0) = #(S0/ ∼) [def. of b0]
= #{{−1}, {1}}
= 2.

We show that ∀n ≥ 1: b0(Sn) = 1. This is equivalent to Sn being path connected.
So, it suffices to assume that x ∈ Sn and to prove that there exists a continuous map
γ : [0, 1] −→ Sn continuous such that γ(0) = N := (1, 0, . . . , 0) and γ(1) = x. In the
case where x = N , let γ be the constant map at x = N . In the case where x = S =
(−1, 0, . . . , 0) ∈ Sn ⊂ Rn+1, define γ(t) = (cos(πt), sin(πt), 0, . . . , 0) ∈ Sn ⊂ Rn+1. It
remains to prove the result in the case where x /∈ {N,S}. In this case, there exists a
rotation matrix A ∈ SO(n+ 1) such that A(N) = N and such that A−1(x) is of the form
A−1(x) = (cos(πs), sin(πs), 0, . . . , 0), for some s ∈ [0, 2). Then, define

γ′ : [0, 1] −→ Sn

t 7−→ (cos(πts), sin(πts), 0, . . . , 0),

and γ = A ◦ γ′. Then, γ is continuous, γ(0) = N and γ(1) = x.

Exercise 8.2. Show that for n > 1 Rn is not homeomorphic to R.

Solution. We start by showing that for every n ∈ N0, Sn is homotopy equivalent to
Rn+1 \ {0}. For this, define

g : Rn+1 \ {0} −→ Sn ι : Sn −→ Rn+1 \ {0}
x 7−→ x

∥x∥
, x 7−→ x.

Then, g and ι are continuous and gι = idSn . We show that ιg is homotopic to idRn+1\{0}.
For this, define

H : [0, 1]× Rn+1 \ {0} −→ Rn+1 \ {0}
(t, x) 7−→ tιg(x) + (1− t)x.

The following computations show that H is well defined:

tιg(x) + (1− t)x = t
x

∥x∥
+ (1− t)x [def. of ι, g]

=
(
t
( 1
∥x∥
− 1

)
+ 1

)
x,
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∥x∥ > 0 =⇒ 1
∥x∥

> 0

=⇒ 1
∥x∥
− 1 > −1

=⇒ t
( 1
∥x∥
− 1

)
> −t

=⇒ t
( 1
∥x∥
− 1

)
> −1 [t ∈ [0, 1]]

=⇒
(
t
( 1
∥x∥
− 1

)
+ 1

)
> 0.

Also, H is continuous and for every x, H(0, x) = x, H(1, x) = ιg(x). So, the maps ιg
and idRn+1\{0} are homotopic, and Sn is homotopy equivalent to Rn+1 \ {0}.

To show that for n > 1 Rn is not homeomorphic to R, we assume by contradiction that
n > 1 and that there exists ϕ : Rn −→ R a homeomorphism. Then, ϕ|Rn\{0} : Rn\{0} −→
R \ {ϕ(0)} is a homeomorphism. The following gives the desired contradiction (in the
next computation we denote homotopy equivalence by ≃ and homeomorphism by ∼=):

2 = b0(S0) [by exercise 8.1]
= b0(R \ {0}) [S0 ≃ R \ {0} and theorem 2.2 in lecture notes 7]
= b0(R \ {ϕ(0)}) [R \ {0} ∼= R \ {ϕ(0)} and theorem 2.2. in lecture notes 7]
= b0(Rn \ {0}) [Rn \ {0} ∼= R \ {ϕ(0)}, by our assumption]
= b0(Sn−1) [Sn−1 ≃ Rn \ {0} and theorem 2.2 in lecture notes 7]
= 1 [by exercise 8.1].

Exercise 8.3. Draw an i-simplex for i = 0, 1, 2. Show that the i-simplex is homeo-
morphic to a point (i = 0), an interval (i = 1), a triangle (i = 2) and a tetrahedron
(i = 3).

Solution. Recall that ∆i =


i+1∑
j=1

tjej : 0 ≤ tj ≤ 1,
i+1∑
j=1

tj = 1
 . Note that for i = 0, this

is just the singleton ∆0 = {e1}.
To understand the cases i > 0, consider the projection map

p : Ri+1 → Ri

(t1, . . . , ti+1) 7→ (t1, . . . , ti),

where we identify the point
i+1∑
j=1

tjej with the tuple (t1, . . . , ti+1). The image of ∆i ⊂ Ri+1

is precisely

p(∆i) =


i∑
j=1

tjej : 0 ≤ tj ≤ 1,
i∑

j=1
tj ≤ 1

 .
For i = 1, 2, 3, this is respectively an interval, a triangle, and a tetrahedron (see Figure
1). Moreover, the restriction p|∆i : ∆i → p(∆i) is a (linear) homeomorphism, with
inverse map

p−1 : p(∆i)→ ∆i
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p(Δ )3

Figure 1: The i-simplex ∆i is depicted in blue, and its image under the projection map
p is depicted in red.

(t1, . . . , ti) 7→ (t1, . . . , ti, 1−
i∑

j=1
tj).

Exercise 8.4. Let (X,OX) and (Y,OY ) be homeomorphic topological spaces. Show
that bn(X) = bn(Y ) for every n.

Solution. In the language of category theory, we first show that taking the homology
of a topological space is functorial. This means that not only we can associate the
vector space Hn(X) for every topological space X, but we may also associate a linear
map f∗ : Hn(X) → Hn(Y ) for every continuous map f : X → Y , which preserves
compositions in the sense that (f ◦ g)∗ = f∗ ◦ g∗ (this means that Hn is covariant as a
functor), and maps the identity to the identity, i.e. (id)∗ = id.

Indeed, given a continuous map f : X → Y , and given any n, we start at the
chain-level, by defining the map

f∗ : Cn(X)→ Cn(Y )

first by prescribing that f∗(ϕ) := f ◦ ϕ for every basis element ϕ (a continuous map
ϕ : ∆n → X), and then extending to Cn(X) as the unique possible way of getting a
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linear extension, i.e. via

f∗

∑
j

rjϕj

 =
∑

j

rjf∗(ϕj) =
∑

j

rj(f ◦ ϕj).

In order to have a well-defined map in homology, we need to check that f∗ commutes
with the differential, i.e. that

dn ◦ f∗ = f∗ ◦ dn.

Note that both sides are linear, so it suffices to check the equality on basis elements ϕ.
For this we observe that ∂j

n(f ◦ ϕ) = f ◦ ∂j
nϕ, for every basis element ϕ, simply because

∂j
nϕ is the restriction of ϕ to the j-th face of ∆n. Then

(dn ◦ f∗)ϕ = −
n+1∑
j=1

(−1)j∂j
n(f ◦ ϕ) = −

n+1∑
j=1

(−1)jf ◦ ∂j
nϕ = (f∗ ◦ dn)ϕ.

From the above equation, we see that f∗ maps cycles to cycles (i.e. it preserves ker dn)
and it maps boundaries to boundaries (i.e. it preserves im dn), and so we obtain a linear
map

f∗ : Hn(X)→ Hn(Y ),
at the level of homology, which is defined as

f∗[ϕ] = [f∗(ϕ)] = [f ◦ ϕ],

where [ϕ] denotes the homology class of a basis element ϕ (and f∗ is uniquely extended
to a linear map).

It is now easy to check that we have the equations

(f ◦ g) = f∗ ◦ g∗, (id)∗ = id,

for any pairs of maps f, g, which follows from the same equation at the chain level.
If f is a homeomorphism, the functorial properties of Hn immediately imply that f∗

is an isomorphism. Indeed, if g is its inverse, then

f∗ ◦ g∗ = (f ◦ g)∗ = (id)∗ = id,

and similarly g∗ ◦ f∗ = id. This means that g∗ is the (linear) inverse of f∗.
In particular, if X and Y are homeomorphic, then their homologies Hn(X) and Hn(Y )

are isomorphic as vector spaces (for every n), and so their ranks (the Betti numbers) are
the same:

bn(X) = dimHn(X) = dimHn(Y ) = bn(Y ).
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9 Exercise sheet No. 9
Exercise 9.1. For n ∈ N0, show that

Hn(X) =
⊕

[x]∈X/∼
Hn([x]).

Solution. For a set S, denote by F (S) the free vector space over R generated by the
elements of S. Denote by C0(Y, Z) the set of continuous maps from a topological space
Y to a topological space Z. So, using this notation, Cn(X) = F (C0(∆n, X)).

First, note that

Cn(X) = F (C0(∆n, X)) [def. of Cn(X)]
= F

(
C0
(
∆n,

⋃
[x]∈X/∼

[x]
))

[∼ is an equivalence relation]

= F
( ⋃

[x]∈X/∼
C0
(
∆n, [x]

))
[⋆]

=
⊕

[x]∈X/∼
F
(
C0(∆n, [x])

)
[†]

=
⊕

[x]∈X/∼
Cn([x]) [def. of Cn([x])].

Here, ⋆ is because C0
(
∆n,

⋃
[x]∈X/∼[x]

)
= ⋃

[x]∈X/∼ C
0
(
∆n, [x]

)
. We prove each inclu-

sion of this equality of sets. (⊂) : If ϕ ∈ C0(∆n,
⋃

[x]∈X/∼[x]), then since ϕ is continuous
we have that ∃![x] ∈ X/ ∼ ϕ(∆n) ⊂ [x]. So, s ∈ C0(∆n, [x]) ⊂ ⋃

[x]∈X/∼ C
0(∆n, [x]).

(⊃) : If ϕ ∈ ⋃
[x]∈X/∼ C

0(∆n, [x]), then by definition of disjoint union there exists an
[x] ∈ X/ ∼ such that ϕ ∈ C0(∆n, [x]). Then, ϕ : ∆n −→ [x] ↪→ ⋃

[x]∈X/∼[x], so
ϕ ∈ C0(∆n,

⋃
[x]∈X/∼[x]).

And † is seen to be true by the following computation. For every family of sets
{Si}i∈I ,

F (
⋃
i∈I

Si) =
⊕

a∈
⋃

i∈I
Si

F ({a})

=
⊕
i∈I

⊕
a∈Si

F ({a})

=
⊕
i∈I

F (Si).

For each n ∈ N0, dn is a linear map Cn(X) −→ Cn−1(X). By the previous equality,
dn is a linear map

dn :
⊕

[x]∈X/∼
Cn([x]) −→

⊕
[x]∈X/∼

Cn−1([x]).

Denote by dn,[x] the differential of the chain complex C([x]):

dn,[x] : Cn([x]) −→ Cn−1([x]).
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Then, by definition of dn, dn respects this decomposition, in the sense that for each
[x] ∈ X/ ∼, dn maps Cn([x]) to Cn−1([x]). By definition of dn and dn,[x], dn restricted
to Cn([x]) is equal to dn,[x]. Then, it’s possible to show ker dn = ⊕

[x]∈X/∼ ker dn,[x],
im dn = ⊕

[x]∈X/∼ im dn,[x] and im dn+1,[x] ⊂ ker dn,[x].
Now the result follows from the following computation:

Hn(X) = ker dn

im dn+1
[by def. of Hn]

=
⊕

[x]∈X/∼ ker dn,[x]⊕
[x]∈X/∼ im dn+1,[x]

[previous paragraph]

=
⊕

[x]∈X/∼

ker dn,[x]

im dn+1,[x]
[♣]

=
⊕

[x]∈X/∼
Hn([x]) [by def. of Hn],

where ♣ follows from the following general fact about linear algebra. If I is a set and if
for every i ∈ I, Vi is a vector space over R and Wi is a subspace of Vi, then⊕

i∈I Vi⊕
i∈I Wi

=
⊕
i∈I

Vi

Wi

.

To prove this fact, consider the following commutative diagram:

Wi Vi
Vi

Wi

⊕
i∈I Wi

⊕
i∈I Vi

⊕
i∈I

Vi

Wi

⊕
i∈I

Vi⊕
i∈I

Wi

ιW
i

ιi

ιV
i

πi

ι
V/W
i

ι ∃!ϕ

π
∃!ϕ

.

In this diagram, ιi is the inclusion, πi is the projection coming from the quotient of Vi

with Wi, ιWi , ιVi and ι
V/W
i are the inclusions in the direct sums, and π is the projection

coming from the quotient of⊕i∈I Vi with⊕i∈I Wi. By the universal property of the direct
sum, there exists a unique ϕ making the right square commute. It remains to show that
kerϕ = ⊕

i∈I Wi, because in this case, by the universal property of the quotient, there
exists a unique linear map ϕ :

⊕
i∈I

Vi⊕
i∈I

Wi
−→ ⊕

i∈I
Vi

Wi
which is an isomorphism. For this,

notice that for every (vi)i∈I ∈
⊕

i∈I Vi

(vi)i∈I ∈ kerϕ⇐⇒ ϕ((vi)i∈I) = 0 [def. ker]
⇐⇒ (ϕιVi (vi))i∈I = 0 [def. ϕ coming from univ. prop.]
⇐⇒ (ιV/W

i πi(vi))i∈I = 0 [the diagram commutes]
⇐⇒ ∀i ∈ I : ιV/W

i πi(vi) = 0
⇐⇒ ∀i ∈ I : πi(vi) = 0 [ker ιV/W

i = 0]
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⇐⇒ ∀i ∈ I : vi ∈ Wi [kerπi = Wi]
⇐⇒ (vi)i∈I ∈

⊕
i∈I

Wi.

Exercise 9.2. Define singular homology using cubes, rather than simplices. Compute
the (cubical) singular homology of a point.

Solution. Given a topological space X and n ∈ N0, we let C□
n (X) be the free R-vector

space generated by continuous maps ϕ : In → X, where In := [0, 1]n is the n-dimensional
cube. We call such a map ϕ a n-cube in X, and elements in C□

n (X), cubical n-chains in
X. We define the following face operators:

In
i,0, I

n
i,1 : In−1 → In, 1 ≤ i ≤ n,

In
i,0(a1, . . . , an−1) = (a1, . . . , ai−1, 0, ai, . . . , an−1)
In

i,1(a1, . . . , an−1) = (a1, . . . , ai−1, 1, ai, . . . , an−1).
Given an n-cube ϕ : In → X, 1 ≤ i ≤ n and k ∈ {0, 1}, we denote

ϕi,k = ϕ ◦ In
i,k : In−1 → X

its restriction to the (i, k)-th face. This operation extends linearly to C□
n (X).

We now define the operator

∂ : C□
n (X)→ C□

n−1(X)

as the unique linear map which satisfies

∂ϕ =
n∑

i=1

∑
k=0,1

(−1)i+kϕi,k

for every n-cube ϕ in X.
We now check that ∂ defines a differential. First, one easily checks that if 1 ≤ i ≤

j ≤ n− 1 and k, l ∈ {0, 1}, then

In
i,k ◦ In−1

j,l = In
j+1,l ◦ In−1

i,k . (3)

This implies that
(ϕi,k)j,l = (ϕj+1,l)i,k (4)

for any (n− 1)-cube ϕ. Moreover, we have

∂∂ϕ = ∂

 n∑
i=1

∑
k=0,1

(−1)i+kϕi,k


=

n∑
i=1

∑
k=0,1

n−1∑
j=1

∑
l=0,1

(−1)i+k+j+l(ϕi,k)j,l

In this sum, (ϕj+1,l)i,k appears with sign (−1)i+k+j+l+1, which is the opposite sign for
the term (ϕi,k)j,l. By Equation (4), we see that everything cancels out and we obtain
∂2 = 0. We may therefore define

H□
n (X) := ker(∂ : C□

n (X)→ C□
n−1(X))/im(∂ : C□

n+1(X)→ C□
n (X))
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to be the homology of ∂ in degree n.
We now compute the cubical homology of a point X = {pt}. Note that there is

unique n-cube ϕn : In → X, and so ϕi,k = ϕn−1 for every i, k. Therefore

∂ϕn =
n∑

i=1

 ∑
k=0,1

(−1)i+kϕn−1

 = 0

since the term for ϕi,0 cancels out that for ϕi,1. We obtain

H□
n (X) = R

for every n ∈ N0, generated by ϕn.
Remark. Note that this differs from the computation using simplices, since this

homology is non-zero in every degree (this is basically the fact that the standard simplex
∆n has an odd number of faces for n ≥ 2). This is remedied by modding out degenerate
chains, those n-chains which are the restriction of a (n+1)-chain to some face, i.e. which
lie in the image of a face operator. More on this in the coming weeks.
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10 Exercise sheet No. 10
Exercise 10.1. Let (X,O) be a topological space and Q̃n(X) be the real vector space
spanned by the continuous maps q : [0, 1]n −→ X, and Dn(X) be the subspace spanned
by the degenerate maps. Here q is degenerate if there is an i such that q(x1, . . . , xn) does
not depend on xi. Now define the quotient space Qn(X) := Q̃n(X)/Dn(X). Show that
the boundary operator d̃n : Q̃n(X) −→ Q̃n−1(X) that you have defined in the second
exercise of last week defines a boundary operator dn : Qn(X) −→ Qn−1(X).

Solution. Step 1: we show that d̃n(Dn(X)) ⊂ Dn−1(X). To prove this, it suffices to
assume that q : In −→ X is a continuous and degenerate map (i.e. there exists an
i = 1, . . . , n such that q(x1, . . . , xn) does not depend on xi) and to prove that d̃nq ∈ Dn−1.
Since

d̃nq =
n∑

j=1
(−1)j(q ◦ In

j,0 − q ◦ In
j,1) [by def. of d̃n in exc. 2 of sheet No. 9]

=
∑

j∈{1,...,n}\{i}
(−1)j(q ◦ In

j,0 − q ◦ In
j,1) [q doesn’t depend on xi⇒ q ◦ In

j,0 = q ◦ In
j,1],

it suffices to show that for each j ∈ {1, . . . , n}\{i} both q◦In
j,0 and q◦In

j,1 are degenerate
cubes. We show that q ◦ In

j,0 is a degenerate cube. By definition of degenerate cube, we
need to show that there exists a k = 1, . . . , n− 1 such that q ◦ In

j,0(x1, . . . , xn−1) does not
depend on xk. Define k = i if i < j and k = i− 1 if i > j. Then,

q ◦ In
j,0(x1, . . . , xn−1) = q(x1, . . . , xj−1, 0, xj, . . . , xn−1) [by def. of In

j,0 in No. 9]

does not depend on xk because q does not depend on xi. The proof of q◦In
j,1 is degenerate

is analogous.
Step 2: we show that there exists a unique dn : Q̃n(X)/Dn(X)→ Q̃n−1(X)/Dn−1(X)

such that the following diagram commutes:

Dn(X) Q̃n(X) Q̃n(X)/Dn(X)

Dn−1(X) Q̃n−1(X) Q̃n−1(X)/Dn−1(X)

d̃n|Dn(X)

ιn

d̃n

πn

∃!dn

ιn−1 πn−1
.

To prove this, by the universal property of the quotient, it suffices to assume that x ∈
kerπn < Q̃n(X) and to prove that πn−1d̃n(x) = 0.

πn−1d̃n(x) = πn−1d̃nιn(x) [x ∈ kerπn = Dn(X)]
= πn−1ιn−1d̃n|Dn(X) [the left square of the diagram commutes]
= 0 [πn−1 is quotient map =⇒ πn−1ιn−1 = 0].

Then, dn is given by dn([x]) = [d̃n(x)], for each [x] ∈ Qn(X).
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Step 3: we show that dndn+1 = 0. Consider the following commutative diagram:

Dn+1(X) Q̃n+1(X) Q̃n+1(X)/Dn+1(X)

Dn(X) Q̃n(X) Q̃n(X)/Dn(X)

Dn−1(X) Q̃n−1(X) Q̃n−1(X)/Dn−1(X)

d̃n+1|Dn+1(X)

ιn+1

d̃n+1

πn+1

∃!dn+1

d̃n|Dn(X)

ιn

d̃n

πn

∃!dn

ιn−1 πn−1

.

dndn+1 = 0⇐⇒ dndn+1πn+1 = 0 [πn+1 is surjective]
⇐⇒ πn−1d̃nd̃n+1 = 0 [the diagram above commutes]
⇐⇒ true [by exercise 2 of sheet No. 9, d̃nd̃n+1 = 0].

Exercise 10.2. Let Hcub
n (X) := ker dn/ im dn+1 be the singular Homology with cubes

as in exercise 10.1 and bcub
n (X) := dimHcub

n (X). Show that for a point {p} the Betti
numbers are bcub

0 ({p}) = 1 and ∀n ≥ 1: bcub
n ({p}) = 0.

Solution. By exercise 2 of sheet No. 9, when X is a point we have d̃n = 0 for all n ≥ 0.
This implies that dn = 0 for all n ≥ 0, because

dn = 0⇐⇒ dnπn = 0 [πn is surjective]
⇐⇒ πn−1d̃n = 0 [diagram defining d̃n commutes]
⇐⇒ true.

In other words, ker dn = Q̃n({p})/D0({p}) and im dn = {0}. By exercise 2 of sheet No.
9, dim Q̃n({p}) = 1. It remains to compute dimDn({p}). We claim that Dn({p}) =
Q̃n({p}) if n ≥ 1 and that D0({p}) = {0}. If n ≥ 1, then every q : In −→ {p} is
degenerate because q is constant. Therefore Dn({p}) = Q̃n({p}) and dimDn({p}) = 1
if n ≥ 1. If n = 0, then the unique map q : I0 −→ {p} is not degenerate (the definition
of degenerate is that ∃i = 1, . . . , n : q does not depend on xi, but here n = 0 so such an
i can’t exist). So D0({p}) = {0} and dimD0({p}) = 0.

bcub
n ({p}) = dimHcub

n (X) [by definition of bcub
0 ]

= dim ker dn

im dn+1
[by definition of Hcub

n ]

= dim ker dn − dim im dn+1 [dimension of quotient of vector spaces]

= dim Q̃n({p})
Dn({p}) − dim{0} [above text]

= dim Q̃n({p})− dimDn({p}) [dimension of quotient of vector spaces]

=
1− 0 if n = 0

1− 1 if n ≥ 1
[above text]

=
1 if n = 0

0 if n ≥ 1
.
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Exercise 10.3. Show that for every path-connected topological space (X,O) we have
that bcub

0 = 1.
Solution. Consider the following commutative diagram:

... ... ...

D1(X) Q̃1(X) Q̃1(X)/D1(X)

D0(X) Q̃0(X) Q̃0(X)/D0(X)

{0} {0} {0}

d̃1|D1(X)

ι1

d̃1

π1

∃!d1

d̃0|D0(X)

ι0

d̃0

π0

∃!d0

ι−1 π−1

.

Step 1: D0(X) = {0} and dim im d1 = dim im d̃1. By definition of degenerate cube,
D0(X) = {0}. Therefore, π0 is an isomorphism, and

dim im d1 = dim im d1 ◦ π1 [π1 is surjective]
= dim im π0 ◦ d̃1 [the diagram above commutes]
= dim im d̃1 [π0 is an isomorphism].

Step 2: dim Q̃0(X)/ im d̃1 = 1. We start by showing that for every σ, δ ∈ C0({0}, X)
(which is the set of generators of Q̃0(X)) we have δ − σ ∈ im d̃1. Define p = σ(0) and
q = δ(0). Since X is path connected, there exists γ : [0, 1] −→ X continuous such that
γ(0) = p and γ(1) = q. Then, γ ∈ C0(I,X) (which is the set of generators of Q̃1(X))
and d̃1γ = δ− σ. So, δ− σ ∈ im d̃1. In other words, for every σ, δ ∈ C0({0}, X) we have
[σ] = [δ] ∈ Q̃0(X)/ im d̃1. Now, choose any p ∈ X and define σ : {0} −→ X, 0 7−→ p.
Then, σ ∈ Q̃0(X) and it has a corresponding equivalence class [σ] ∈ Q̃0(X)/ im d̃1. By
the previous discussion, Q̃0(X)/ im d̃1 is generated by [σ].

Step 3: putting everything together.

bcub
0 ({p})

= dimHcub
0 (X) [by definition of bcub

0 ]

= dim ker d0

im d1
[by definition of Hcub

0 ]

= dim ker d0 − dim im d1 [dimension of quotient]
= dim Q̃0(X)/D0(X)− dim im d1 [d0 : Q̃0(X)/D0(X) −→ {0}

=⇒ ker d0 = Q̃0(X)/D0(X)]
= dim Q̃0(X)− dimD0(X)− dim im d1 [dimension of quotient]
= dim Q̃0(X)− dim im d1 [by step 1, D0 = {0}]
= dim Q̃0(X)− dim im d̃1 [by step 1, dim im d̃1 = dim im d1]
= dim Q̃0(X)/ im d̃1 [dimension of quotient]
= 1 [by step 2].
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11 Exercise sheet No. 11
In this exercise sheet we go over an introduction to category theory and homological
algebra. These are mathematical theories that can be used to talk about the various kinds
of homologies in topological spaces. We then use these new concepts from category theory
and homological algebra to solve exercise 4 (homotopy invariance of cubical homology)
from lecture notes No. 10. Your goals are to:

• read the sketch of the solution of exercise 4;

• read onwards to learn about the new concepts from category theory and homolog-
ical algebra;

• prove the lemmas in this text as they show up;

• in the end, use everything you learned to write the final step of the proof of homo-
topy invariance.

Exercise 11.1. Let (X,OX) and (Y,OY ) be homotopy equivalent topological spaces.
Show that bcub

n (X) = bcub
n (X) for all n ∈ N0.

Solution sketch. We start with a proof sketch. As we saw before, it’s possible to write
the singular homology (cubical or with simplexes) in the language of category theory
(definition 11.2 below) by saying it’s a functor (definition 11.5 below). For cubical
singular homology, we created a sequence of vector spaces Qn(X) together with maps
dn : Qn(X) −→ Qn−1(X) (this data is what’s called a chain complex (definition 11.12
below)). Given these vector spaces Qn(X) and dn, we can define the homology (see
definition 11.16) below of the chain complex Qn(X), which we are denoting by Hcub

n (X).
We will write down what we just said in terms of categories and functors: there are
categories Top of topological spaces, Vec of vector spaces over R, Comp of chain
complexes. Also, there are functors Q : Top −→ Comp (that to every topological
space assigns its chain complex, that is, the family of Qn’s and dn’s - lemma 11.22) and
Hn : Comp −→ Vec (that to every chain complex assigns it’s n-th homology vector
space):

Top Comp VecQ Hn .

We saw this discussion already on exercise sheet No. 9 in the other case of homology
with simplexes. Now, we are going to consider extra notions on the categories Top
and Comp. Namely, in Top we have the notion of two maps of topological spaces
being homotopic and in Comp we have the notion of two maps of chain complexes
being chain homotopic (definition 11.14). In a way that we will make precise later, these
notions are "equivalence relations" (we are going to call these special equivalence relations
congruences - see definition 11.8 below) in our categories Top and Comp, and we can
define new categories Top/ ∼, Comp/ ∼ which are the "quotients" (definition 11.9). We
are also going to have "quotient maps" (definition 11.10) between the categories, which

37



in this case are functors. So, we will have the following diagram:

Top Comp Vec

Top/ ∼ Comp/ ∼

Q

π

Hn

π .

Once we have all this machinery set up, the main steps to show that cubical homology
is homotopy invariant are going to be showing that the functors Q and Hn descend to
these quotient categories (lemmas 11.11, 11.19 and 11.23), so that we end up with a
commutative diagram

Top Comp Vec

Top/ ∼ Comp/ ∼

Q

π

Hn

π

Q

Hn
.

Having this commutative diagram would finish the proof, because if X and Y are ho-
motopy equivalent, then that means that in the category Top/ ∼ they are isomorphic,
and then that means that Hcub

n (X) = HnQ(X) ∼= HnQ(Y ) = Hcub
n (Y ). Now we write

everything we said precisely/with more detail.

11.2 Categories and functors
Definition 11.2. A category C is given by the following data

• A class C, whose elements are the objects of the category;

• For each A,B ∈ C, a class HomC(A,B) of morphisms from A to B. For f ∈
Hom(A,B), we write f : A −→ B;

• For each A,B,C ∈ C, a composition map

◦ : HomC(A,B)× HomC(B,C) −→ HomC(A,C)
(f, g) 7−→ gf

satisfying the following axioms:

(domain and target) For each A,B,C,D ∈ C, HomC(A,B) ∩ HomC(C,D) = ∅. If
f : A −→ B, A is the domain of f and B is the target of f ;

(identity morphism) For all A ∈ C there exists idA : A −→ A such that for all
f : A −→ B we have that idBf = f and f idA = f ;

(associativity) If f : A −→ B, g : B −→ C and h : C −→ D then h(gf) = (hg)f .

A quick note: a category C is the class of objects and the class of morphisms. In
our definition, we wrote C for the class of objects as well. What we mean is that even
though the category itself and it’s class of objects are different things, we are committing
an abuse of language and denoting the category and it’s class of objects with the same
symbol. Some examples of categories are:
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Example 11.3.
Grp, where objects are groups and morphisms are group homomorphisms;
Top, where objects are topological spaces and morphisms are continuous maps;
Vec, where objects are vector spaces over R and morphisms are linear maps.

Definition 11.4. Let C be a category and f : A −→ B be a morphism in C. f is
an isomorphism if there exists a morphism g : B −→ A such that f ◦ g = idB and
g ◦ f = idA.

A functor is going to be a "morphism" of categories. A category has objects and
morphisms, so a functor from a category C to a category D should map objects of C to
objects of D and it should map morphisms of C to morphisms of D. A functor must
also preserve the other structure of the category, so it should preserve identities and
composition.

Definition 11.5. Let C,D be categories. A functor F from C to D, denoted F : C −→
D is given by the data

• a function F : C −→ D,

• for each A,B ∈ C, a function F : HomC(A,B) −→ HomD(FA, FB),

such that

(identity) ∀A ∈ C : F (idA) = idF (A);

(composition) ∀A,B,C ∈ C : ∀f : A −→ B : ∀g : B −→ C : F (gf) = F (g)F (f).

Lemma 11.6. Let C, D be categories, F : C −→ D be a functor, and f : A −→ B be an
isomorphism in C. Then, F (f) : F (A) −→ F (B) is an isomorphism.

Proof. By definition of isomorphism, we need to show that there exists a morphism
h : F (B) −→ F (A) such that F (f)h = idF (B) and hF (f) = idF (A). Since f is an
isomorphism, there exists a morphism g : B −→ A such that f ◦g = idB and g ◦f = idA.
Then,

F (f)F (g) = F (fg) [F is a functor, so it preserves composition]
= F (idB) [f and g are inverses]
= idF (B) [F is a functor, so it preserves identities],

and analogously F (g)F (f) = idF (A).

Lemma 11.7. Let C, D, E be categories and F : C −→ D, G : D −→ E be functors.
Then,

FG : C −→ E
X 7−→ F (G(X))
f ↓ 7−→ ↓ F (G(f))
Y 7−→ F (G(Y ))

is a functor.
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Proof. FG preserves identities:

FG(idX) = F (G(idX))
= F (idG(X))
= idF (G(X))

= idF G(X) .

FG preserves compositions:

FG(fg) = F (G(fg))
= F (G(f)G(g))
= F (G(f))F (G(g))
= FG(f)FG(f).

Definition 11.8. Let C be a category. A congruence on C is an assignment ∼ that
for each ordered pair {A,B} of objects of C gives an equivalence relation ∼A,B on
HomC(A,B), which satisfies the following property: for all A,B,C ∈ C and for all
f, f ′ : A −→ B and for all g, g′ : B −→ C, if f ∼A,B f ′, g ∼B,C g′, then g ◦ f ∼A,C g′ ◦ f ′.

To make the notation simpler, we are going to omit the subscript in each equivalence
relation and write only ∼ instead of ∼A,B. But keep in mind that we have a family of
equivalence relations, one for each ordered pair of objects in the category.

Definition 11.9. Let C be a category with a congruence ∼. Define the quotient
category of C, denoted C/ ∼, as follows.

(Objects) Objects in C are objects in C/ ∼;

(Morphisms) For A,B ∈ C, HomC/∼(A,B) = HomC(A,B)/ ∼;

(Composition) For [f ] : A −→ B, [g] : B −→ C morphisms in C/ ∼, [g] ◦ [f ] = [g ◦ f ].

By the definition of congruence, C/ ∼ is well defined and is a category. We denote
by idA,∼ = [idA] the identity morphism of the object A in C/ ∼.

Definition 11.10. Let C be a category with a congruence ∼, and let C/ ∼ be its quotient
category. The quotient functor of C is the functor

π : C −→ C/ ∼
A 7−→ A

f ↓ 7−→ ↓ [f ]
B 7−→ B.

It is routine to see that π : C −→ C/ ∼ preserves identities and composition, so it is
a functor.

Lemma 11.11. Let C be a category with a congruence ∼, let C/ ∼ be the quotient
category of C, and let A be a category. If F : C −→ A is a functor such that for all
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A,B ∈ C and for all morphisms f, g : A −→ B in C we have f ∼ g =⇒ F (f) = F (g),
then there exists a unique functor F ′ such that the following diagram commutes:

C A

C/ ∼

π

F

F ′ .

Proof. Uniqueness: if F ′ is such a functor, then for every A ∈ C we have F ′(A) =
F ′(π(A)) = F (A) and for every [f ] : A −→ B a morphism in C/ ∼ (with representative
f : A −→ B) we have F ′([f ]) = F ′(π(f)) = F (f). So, F ′ is uniquely determined.

Existence: define F ′ with the equations above. We need to check that the definition
of F on morphisms is well posed. This is true by the property "f ∼ g =⇒ F (f) = F (g)".
We also need to check that F ′ given this way is a functor:

F ′([f ][g]) = F ′([fg]) [def. composition in C/ ∼]
= F (fg) [def. F ′]
= F (g)F (g) [F is a functor]
= F ′([f ])F ′([g]) [def. F ′],

F ′(idA,∼) = F ′([idA]) [[idA] is the identity of A in C/ ∼]
= F (idA) [def. F ′]
= idF (A) [F is a functor]
= idF ′(A) [def. F ′].

11.3 Topological spaces
Again, with the definitions we just gave, there is a category Top whose objects are
topological spaces, morphisms are continuous maps, and such that composition of mor-
phisms is just the usual composition of functions. If we have two topological spaces
X, Y and continuous maps f, g : X −→ Y , then we have a notion of the maps f , g being
homotopic. We have already seen that "homotopic" is an equivalence relation and that
if f, f ′ : X −→ Y and g, g′ : Y −→ Z are two pairs of homotopic continuous maps, then
g ◦ f and g ◦ f ′ are homotopic. Therefore, "homotopic" is a congruence on the category
of topological spaces. Therefore, by lemma 11.11, we have a quotient category Top/ ∼
and a quotient functor π : Top −→ Top/ ∼.

11.4 Chain complexes
Definition 11.12. A chain complex of vector spaces over R, C, is a sequence {Cn}n∈Z
of vector spaces over R and a sequence of linear maps dn : Cn −→ Cn−1 such that
dndn+1 = 0 for every n ∈ Z (in other words, such that im dn+1 ⊂ ker dn).
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Definition 11.13. Let C, D be chain complexes. A chain map from C to D is a
sequence of linear maps fn : Cn −→ Dn such that the following diagram commutes:

· · · Cn Cn−1 · · ·

· · · Dn Dn−1 · · ·

fn

dC
n

fn−1

dD
n

.

The composition of two chain maps is again a chain map, so chain complexes of
vector spaces over R and chain maps form a category which we are going to call Comp.

Definition 11.14. Let C, D be chain complexes and f, g : C −→ D be chain maps. A
chain homotopy from f to g is a sequence of linear maps Tn : Cn −→ Dn+1 such that
fn − gn = dD

n+1Tn + Tn−1d
C
n . In this case, we say that f is chain homotopic to g.

Lemma 11.15. "Chain homotopic" is a congruence on the category of chain complexes
of vector spaces over R.

Proof. We show that "chain homotopic" is an equivalence relation.
Reflexive: if f is a chain map, then Tn = 0 is a chain homotopy from f to f .
Symmetric: if Tn is a chain homotopy from f to g, then −Tn is a chain homotopy

from g to f .
Transitive: If Tn is a chain homotopy from f to g and Un is a chain homotopy from

g to h, then Tn + Un is a chain homotopy from f to h:

fn − hn = fn − gn + gn − hn

= dD
n+1Tn + Tn−1d

C
n + dD

n+1Un + Un−1d
C
n

= dD
n+1(Tn + Un) + (Tn−1 + Un−1)dC

n .

We show that in addition to being an equivalence relation, "chain homotopic" is a
congruence. For this, assume that f, f ′ and g, g′ are chain maps and that Tn is a chain
homotopy from f to f ′ and that Un is a chain homotopy from g to g′. Then, gn+1Tn is
a chain homotopy from gf to gf ′:

gnfn − gnf
′
n = gn(fn − f ′

n)
= gn(dD

n+1Tn + Tn−1d
C
n )

= gnd
D
n+1Tn + gnTn−1d

C
n

= dE
n+1gn+1Tn + gnTn−1d

C
n ,

and by an analogous computation Unf
′
n is a chain homotopy from gf ′ to g′f ′. By

transitivity, gf is chain homotopic to g′f ′.

By lemmas 11.11 and 11.15, we have a quotient category Cong/ ∼ and a quotient
functor π : Cong −→ Cong/ ∼.
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11.5 Homology
Definition 11.16. Let C be a chain complex of vector spaces over R. The n-th Ho-
mology vector space of C is Hn(C) := ker dn

im dn+1
.

Lemma 11.17. Let C,D be chain complexes of vector spaces over R and f : C −→ D
be a chain map. Consider fn : Cn −→ Dn. Then, fn maps im dC

n+1 to im dD
n+1 and it

maps ker dC
n to ker dD

n . Also, there exists a unique Hn(f) making the following diagram
commute:

im dC
n+1 ker dC

n ker dC
n / im dC

n+1

im dD
n+1 ker dD

n ker dD
n / im dD

n+1

fn

ιC
n

fn

πC
n

Hn(f)

ιD
n πD

n

,

which is given by Hn(f)([x]) = [fn(x)] for each [x] ∈ ker dC
n / im dC

n+1. We say that
Hn(f) : Hn(C) −→ Hn(D) is the map induced by Hn and f .
Proof. fn maps im dC

n+1 to im dD
n+1: it suffices to assume that x ∈ im dC

n+1 and to prove
that fn(x) ∈ im dD

n+1. Since x ∈ im dC
n+1, there exists an a ∈ Cn+1 such that dC

n+1(a) = x.

fn(x) = fnd
C
n+1(a) [def. a]

= dD
n+1fn+1(a) [f is a chain map]

∈ im dD
n+1 [def. image].

fn maps ker dC
n to ker dD

n : it suffices to assume that x ∈ ker dC
n and to prove that

fn(x) ∈ ker dD
n .

dD
n fn(x) = fn−1d

C
n (x) [f is a chain map]

= fn−10 [x ∈ ker dC
n ]

= 0.

There exists a unique Hn(f) such that the diagram above commutes: by the universal
property of the quotient, it suffices to assume that x ∈ ker dC

n is such that πC
n (x) = 0,

and to prove that πD
n fn(x) = 0. Note that x ∈ kerπC

n = im dC
n+1, because πC

n is the
quotient map.

πD
n fn(x) = πD

n fnι
C
n (x) [x ∈ im dC

n+1]
= πD

n ι
D
n fn(x) [the left square commutes]

= 0 [πD
n ι

D
n = 0].

For x ∈ ker dC
n , Hn(f) is given by Hn(f)([x]) = [fn(x)], again by the universal property

of the quotient.
Lemma 11.18. The n-th Homology vector space

Hn : Comp −→ Vec
C 7−→ Hn(C)
f ↓ 7−→ ↓ Hn(f)
D 7−→ Hn(D)

is a functor.
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Proof. Hn preserves identities: it suffices to assume [x] ∈ Hn(C) = ker dC
n

im dC
n+1

with repre-
sentative x ∈ ker dC

n and to prove that Hn(idC)([x]) = idHn(C)([x]).

Hn(idC)([x]) = [(idC)n(x)] [def. Hn on morphisms]
= [idCn(x)] [identities on the category of chain complexes]
= [x]
= idHn(C)([x]).

Hn preserves compositions: let f : C −→ D and g : D −→ E be morphisms of chain
complexes. It suffices to assume [x] ∈ Hn(C) = ker dC

n

im dC
n+1

with representative x ∈ ker dC
n

and to prove that Hn(g)Hn(f)([x]) = Hn(gf)([x]).

Hn(g)Hn(f)([x]) = Hn(g)([fn(x)]) [def. Hn on morphisms]
= [gnfn(x)] [def. Hn on morphisms]
= [(gf)n(x)] [compositions on the cat. of chain complexes]
= Hn(gf)([x]) [def. Hn on morphisms].

Lemma 11.19. Let C,D be chain complexes and f, g : C −→ D be chain maps. If f, g
are chain homotopic, then Hn(f) = Hn(g) : Hn(C) −→ Hn(D).

Proof. Let [v] ∈ Hn(C), with representative v ∈ ker dC
n . We must show that Hn(f)([v]) =

Hn(g)([v]). Let Tn be a chain homotopy from f to g. Then,

Hn(f)([v])
= [fn(v)] [def. Hn(f)]
= [gn(v)] + [dD

n+1Tn(v)] + [Tn−1d
C
n (v)] [Tn is a chain homotopy from f to g]

= [gn(v)] + [dD
n+1Tn(v)] [v ∈ ker dC

n ]
= [gn(v)] [dD

n+1Tn(v) ∈ im dD
n+1]

= Hn(g)([v]) [def. Hn(g)].

By lemmas 11.11 and 11.19, the n-th Homology functor descends to a functor on the
quotient category, which we denote also by Hn:

Comp Vec

Comp/ ∼

Hn

π
Hn

.

11.6 Cubical singular chain complex
If we have a topological space X, we have already seen that we can form it’s cubical
singular chain complex, Qn(X) which has differentials dn : Qn(X) −→ Qn−1(X). We
denote by Q(X) the chain complex, so Q(X) is the data {Qn(X)}n∈Z, {dn}n∈Z.

Definition 11.20. Let X, Y be topological spaces. Let f : X −→ Y be a continuous
map. Define the chain map induced by f , denoted Q(f) : Q(X) −→ Q(Y ), as follows.
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Q(f) is going to be a chain map, so we need to say what is Qn(f) : Qn(X) −→ Qn(Y )
for each n. We start by defining a linear map Q̃n(f) : Q̃n(X) −→ Q̃n(Y ). By linearity, it
suffices to say what is Q̃n(f)(σ) for each σ ∈ C0(In, X). We define Q̃n(f)(σ) = f ◦ σ ∈
C0(In, Y ) ⊂ Q̃n(Y ). Then, we can check that Q̃n(f) maps Dn(X) to Dn(Y ). By the
universal property of the quotient, there exists a unique linear map Qn(f) such that the
diagram

Dn(X) Q̃n(X) Qn(X)

Dn(Y ) Q̃n(Y ) Qn(Y )

ιX
n

Q̃n(f)|Dn(X) Q̃n(f)

πX
n

∃!Qn(f)

ιY
n πY

n

commutes, which is given by Qn(f)([x]) = [Q̃n(f)(x)] for every [x] ∈ Qn(X).

Lemma 11.21. In definition 11.20, Q(f) : Q(X) −→ Q(Y ) is a map of chain complexes.

Proof. We want to prove that dY
nQn(f) = Qn−1(f)dX

n . Since πX
n is surjective, it suffices

to show that dY
nQn(f)πX

n = Qn−1(f)dX
n π

X
n . By linearity, it suffices to assume that

σ ∈ C0(In, X) and to prove that dY
nQn(f)πX

n (σ) = Qn−1(f)dX
n π

X
n (σ).

dY
nQn(f)πX

n (σ) = dY
nQn(f)([σ]) [def. πn]

= dY
n

(
[Q̃n(f)(σ)]

)
[def. Qn(f)]

= dY
n ([f ◦ σ]) [def. Q̃n(f)]

= [d̃Y
n (f ◦ σ)] [def. dY

n ]

=
[ n∑

j=1
(−1)j

(
f ◦ σ ◦ In

j,0 − f ◦ σ ◦ In
j,1

)]
[def. d̃Y

n ]

=
[
Q̃n−1(f)

n∑
j=1

(−1)j
(
σ ◦ In

j,0 − σ ◦ In
j,1

)]
[def. Q̃n−1(f)]

= Qn−1(f)
[ n∑

j=1
(−1)j

(
σ ◦ In

j,0 − σ ◦ In
j,1

)]
[def. Qn−1(f)]

= Qn−1(f)
(
[d̃X

n (σ)]
)

[def. d̃X
n ]

= Qn−1(f)dX
n ([σ]) [def. dX

n ]
= Qn−1(f)dX

n πn(σ) [def. πX
n ].

Lemma 11.22. The cubical singular chain complex

Q : Top −→ Comp
X 7−→ Q(X)
f ↓ 7−→ ↓ Q(f)
Y 7−→ Q(Y )

is a functor.

Proof. Q preserves identities: we have to show that Q(idX) = idQ(X), i.e. that Qn(idX) =
idQn(X). Since πX

n is surjective, it suffices to show that Qn(idX)πX
n = idQn(X) π

X
n . By
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linearity, it suffices to assume that σ ∈ C0(In, X) and to prove that Qn(idX)πX
n (σ) =

idQn(X) π
X
n (σ).

Qn(idX)πX
n (σ) = [Q̃n(idX)(σ)]

= [idX σ]
= [σ]
= idQn(X)([σ])
= idQn(X) π

X
n (σ).

Q preserves compositions: we have to show that Q(g)Q(f) = Q(gf), i.e. that
Qn(g)Qn(f) = Qn(gf). Since πX

n is surjective, it suffices to show that Qn(g)Qn(f)πX
n =

Qn(gf)πX
n . By linearity, it suffices to assume that σ ∈ C0(In, X) and to prove that

Qn(g)Qn(f)πX
n (σ) = Qn(gf)πX

n (σ).

Qn(g)Qn(f)πX
n (σ) = Qn(g)Qn(f)([σ])

= Qn(g)([Q̃n(f)(σ)])
= [Q̃n(g)Q̃n(f)(σ)]
= [Q̃n(g)(f ◦ σ)]
= [g ◦ f ◦ σ]
= [Q̃n(gf)(σ)]
= Qn(gf)([σ])
= Qn(gf)πX

n (σ).

As we said before, what we did so far is setting up some categorical language for this
problem. The following lemma is the main step of the solution of our problem.

Lemma 11.23. Let X, Y be topological spaces, and f, g : X −→ Y be continuous maps.
If f, g : X −→ Y are homotopic then Q(f), Q(g) : Q(X) −→ Q(Y ) are chain homotopic.

Proof. Let H be a homotopy from f to g. We wish to show that there exists a chain
homotopy Pn : Qn(X) −→ Qn+1(Y ) from Q(f) to Q(g), i.e. that Qn(f) − Qn(g) =
dY

n+1Pn +Pn−1d
X
n . We start by defining a map P̃n : Q̃n(X) −→ Q̃n+1(Y ). By linearity, it

suffices to say what is P̃nσ for each σ ∈ C0(In, X). Note that

In+1 = In × I X × I Y.
σ×idI H

Then, we define P̃n(σ) = (−1)n+1H◦(σ×idI). Then, P̃n mapsDn(X) toDn+1(Y ). There-
fore, by the universal property of the quotient, there exists a unique map Pn : Qn(X) −→
Qn+1(Y ) such that the following diagram commutes:

Dn(X) Q̃n(X) Qn(X)

Dn+1(Y ) Q̃n+1(Y ) Qn+1(Y )

ιX
n

P̃n|Dn(X) P̃n

πX
n

∃!Pn

ιY
n+1 πY

n+1

.
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For each [x] ∈ Qn(X), Pn([x]) = [P̃n(x)]. We claim that Pn is the desired chain homotopy.
We start by showing that for k = {0, 1}, H ◦ (σ × idI) ◦ In+1

j,k = H ◦ ((σ ◦ In
j,0)× idI).

H ◦ (σ × idI) ◦ In+1
j,k (x1, . . . , xn) = H ◦ (σ × idI)(x1, . . . , xj−1, k, xj, . . . , xn)

= H(σ(x1, . . . , xj−1, k, xj, . . . , xn−1), xn)
= H(σ ◦ In

j,k(x1, . . . , xn−1), xn)
= H ◦ ((σ ◦ In

j,0)× idI)(x1, . . . , xn).

We now show that Qn(f) − Qn(g) = dY
n+1Pn + Pn−1d

X
n . Since πX

n : Q̃n(X) −→ Qn(X)
is surjective, it suffices to show that Qn(f)πX

n − Qn(g)πX
n = dY

n+1Pnπ
X
n + Pn−1d

X
n π

X
n .

By linearity, it suffices to assume that σ ∈ C0(In, X) and to prove that Qn(f)πX
n (σ) −

Qn(g)πX
n (σ) = dY

n+1Pnπ
X
n (σ) + Pn−1d

X
n π

X
n (σ).

dY
n+1Pnπ

X
n (σ) + Pn−1d

X
n π

X
n (σ)

= dY
n+1Pn([σ]) + Pn−1d

X
n ([σ])

= dY
n+1([P̃n(σ)]) + Pn−1([d̃X

n (σ)])
= [d̃Y

n+1P̃n(σ)] + [P̃n−1d̃
X
n (σ)]

= [d̃Y
n+1P̃n(σ) + P̃n−1d̃

X
n (σ)]

= [(−1)n+1d̃Y
n+1(H ◦ (σ × idI)) + (−1)nP̃n−1(d̃X

n σ)]

=
[
(−1)n+1

n+1∑
j=1

(−1)j
(
H ◦ (σ × idI) ◦ In+1

j,0 −H ◦ (σ × idI) ◦ In+1
j,1

)
+ (−1)n

n∑
j=1

(−1)j
(
H ◦ ((σ ◦ In

j,0)× idI)−H ◦ ((σ ◦ In
j,k)× idI)

)]
=
[
(−1)n+1(−1)n+1

(
H ◦ (σ × idI) ◦ In+1

n+1,0 −H ◦ (σ × idI) ◦ In+1
n+1,1

)]
= [H(·, 0) ◦ σ −H(·, 1) ◦ σ]
= [f ◦ σ]− [g ◦ σ]
= [Q̃n(f)(σ)]− [Q̃n(g)(σ)]
= Qn(f)([σ])−Qn(g)([σ])
= Qn(f)πX

n (σ)−Qn(g)πX
n (σ).

By lemmas 11.11 and 11.23, the cubical chain complex functor descends to a functor
on the quotient categories, which we denote also by Q:

Top Comp

Top/ ∼ Comp/ ∼

Q

π π

Q

.
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11.7 Conclusion
By everything we proved, we have a commutative diagram of categories and functors

Top Comp Vec

Top/ ∼ Comp/ ∼

Q

π

Hn

π

Q

Hn
,

so now we can finish the proof.

Exercise 11.1. Let (X,OX) and (Y,OY ) be homotopy equivalent topological spaces.
Show that bcub

n (X) = bcub
n (X) for all n ∈ N0.

Solution. We start by showing that as objects of the category Top/ ∼, X and Y are
isomorphic. Since X and Y are homotopy equivalent, there exist f : X −→ Y and
g : Y −→ X such that fg ∼ idY and gf ∼ idX (here ∼ denotes "homotopic to"). Then,
consider the morphisms [f ] : X −→ Y and [g] : Y −→ X in Top/ ∼. Then,

[f ][g] = [fg] [def. of composition in Top/ ∼]
= [idB] [fg ∼ idB]
= idB,∼,

and [g][f ] = [idA] = identity of A in Top/ ∼. So X and Y are isomorphic in Top/ ∼.
Then,

bcub
n (X) = dimHcub

n (X) [def. bcub
n ]

= dimHnQ(X) [def. Hcub
n ]

= dimHnQ(Y ) [X and Y are isomorphic in Top/ ∼, lemma 11.6]
= dimHcub

n (Y ) [def. Hcub
n ]

= bcub
n (Y ) [def. bcub

n ].
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12 Exercise sheet No. 12
Exercise 12.1. Write down B1 and B2 explicitly.

Solution. Recall first the definitions for every n:

B0 = id∆0 : ∆0 → ∆0,

and
Bn = βn

n−1

(
B∆n

n−1(dnid∆n)
)
, if n > 0,

where
βn

k : Ck(∆n)→ Ck+1(∆n),

βn
k (ϕ)

(
k+2∑
i=1

tiei

)
=
{
t1µn + (1− t1)ϕ

(
1

1−t1

∑k+1
i=1 ti+1ei

)
t1 ̸= 1

µn t1 = 1,

for any continuous map ϕ : ∆k → ∆n and with µn = 1
n+1(1, . . . , 1) the barycenter of ∆n,

and
BX

n : Cn(X)→ Cn(X)
BX

n (ψ) = ψ#Bn,

for any space X and any continuous map ψ : ∆n → X. We now unwrap the definition.
For n = 1 we have:

B1 =β1
0(B∆1

0 (d1id∆1))
=β1

0(B∆1

0 (e2 − e1))
=β1

0((e2)#B0 − (e1)#B0)
=β1

0(e2 ◦ id∆0 − e1 ◦ id∆0)
=β1

0(e2)− β1
0(e1)

(5)

Note that the above minus sign is formal. Evaluating at a point of ∆1, we have

β1
0(ei)

( 2∑
i=1

tiei

)
= t1µ1 + (1− t1)ei,

for i = 1, 2 (where we have used that ei is a constant map and therefore there is no need
to distinguish between cases). See Figure 2.

We now do n = 2. Denote fj := ∂j
2id∆2 : ∆1 → ∆2 the j-th face of the 2-simplex,

which one may parametrize as fj (te1 + (1− t)e2) = ej + t(ej+1− ej) (where we take the
index j mod 3). Then

B2 =β2
1(B∆2

1 (d2id∆2))
=β2

1(B∆2

1 (f1 − f2 + f3))
=β2

1((f1 − f2 + f3)#B1)
=β2

1((f1 − f2 + f3)#(β1
0(e2)− β1

0(e1))

=
3∑

j=1

2∑
i=1

(−1)i+j+1∆ij,

(6)
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β (  )
0
1e2

e1

e2

β (  )
0
1 e1

μ1

Figure 2: The barycentric subdivision of ∆1. Roughly speaking, it is subdivided into
two smaller 1-simplices with opposite signs.

where ∆ij = β2
1(fj ◦ β1

0(ei)). Again, note that the expression for B2 is just a formal
alternated sum. To understand each term, we evaluate at a point of ∆2, and get

∆ij

( 3∑
i=1

tiei

)
=
{
t1µ2 + (1− t1)fj

(
t2

1−t1
µ1 + (1− t2

1−t1
)ei

)
t1 ̸= 1

µ2 t1 = 1.

Using µ1 = 1
2(e1 + e2), we can write

t2
1− t1

µ1 +
(

1− t2
1− t1

)
ei =

(
1− t2

2(1− t1)

)
ei + t2

2(1− t1)
ei+1,

where we take the index i mod 2, and therefore

fj

(
t2

1− t1
µ1 +

(
1− t2

1− t1

)
ei

)
= ej + t(i)(ej+1 − ej),

where t(i) =
{

1− t2
2(1−t1) , i = 1
t2

2(1−t1) i = 2.
We then get

∆ij

( 3∑
i=1

tiei

)
= t1µ2 + (1− t1)(ej + t(i)(ej+1 − ej)),

with no need to distinguish between cases by noting that the above expression is well-
defined for t1 = 1. See Figure 3.

Exercise 12.2. Show that ϕ#T
∆k

k−1 = T∆n

k−1ϕ#, for every ϕ : ∆k → ∆n.

Solution. Recall the definitions:

T0 = β0
0(id∆0) ∈ C1(∆0),

and
Tn = βn

n

(
id∆n − T∆n

n−1dnid∆n

)
∈ Cn+1(∆n), if n > 0.
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Figure 3: The barycentric subdivision of ∆2, which decomposes it into a formal alternated
sum of smaller copies of itself.

where
TX

n−1 : Cn−1(X)→ Cn(X)
TX

n−1ψ = ψ#Tn−1,

for ψ : ∆n−1 → X and for any space X. The diagram we wish to show to be commutative
is then:

Ck−1(∆k) Ck−1(∆n)

Ck(∆k) Ck(∆n)

ϕ#

T ∆k

k−1 T ∆n

k−1

ϕ#

.

This fact is actually independent on the definition of Tn, and follows simply from the
covariance of the push-forward functor. Indeed, for arbitrary ψ we have:

ϕ#T
∆k

k−1ψ = ϕ#ψ#Tk−1

= (ϕ ◦ ψ)#Tk−1

= T∆n

k−1(ϕ ◦ ψ)
= T∆n

k−1ϕ#(ψ).

(7)

Exercise 12.3. Show that the equation

dn+1T
X
n + TX

n−1dn = idCn(X) −BX
n

implies that the induced map in homology

B
X
n : Hn(X)→ Hn(X)

is the identity idHn(X).
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Solution. Let us first remark that this is a general fact: The above equation, by defini-
tion, means that BX

n is homotopic to the identity or nullhomotopic (as a chain map),
where the homotopy is provided by the maps TX

n . The following proof can be stated
as: nullhomotopic chain maps induce the identity in homology. Moreover, a further gen-
eral fact is that nullhomotopic maps of spaces induce nullhomotopic chain maps of the
singular homology complexes.

The proof is straightforward: if [c] ∈ Hn(X) with c ∈ Cn(X) such that dnc = 0, then
the above homotopy equation implies

dn+1T
X
n (c) = c−BX

n (c),

therefore the class of c−BX
n (c) is 0, and therefore idHn(X)[c] = [c] = [BX

n (c)] = B
X

n ([c]) ∈
Hn(X).
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13 Exercise sheet No. 13
Exercise 13.1. Show that it’s possible to write the two-dimensional torus T 2 = S1×S1

as T 2 = U ∪ V , where U, V ⊂ T 2 are open subsets with the property that U and V are
both homotopy equivalent to a circle and U ∩ V is homotopy equivalent to the disjoint
union of two circles S1 ⊔ S1.
Solution. Recall that S1 := {x ∈ R2 | ∥x∥ = 1}. Define

A := S1 ∩ (−∞, 1/2)× R ⊂ S1 ⊂ R2

B := S1 ∩ (−1/2,+∞)× R ⊂ S1 ⊂ R2

C := A ∩B ∩ (R× (0,+∞))
D := A ∩B ∩ (R× (−∞, 0))
U := A× S1

V := B × S1.

Then, T 2 = S1 × S1 = (A ∪B)× S1 = A× S1 ∪B × S1 = U ∪ V . U and V are open in
T 2, because A and B are open in R and by definition of the product topology.

We now prove an auxiliary result: for any θ0, θ1 ∈ R such that 0 < θ0 < θ1 < 2π, if
L := {(cos θ, sin θ) ∈ R2 | θ ∈ (θ0, θ1)}, then L is homotopy equivalent to a point. To
show this, define θ∗ = θ0/2 + θ1/2. Define p∗ = (cos θ∗, sin θ∗) and

f : {p∗} −→ L g : L −→ {p∗}
p∗ 7−→ p∗, p 7−→ p∗.

Then, g ◦ f = id{p∗}. It remains to show that f ◦ g is homotopic to idL. For this, define

H : [0, 1]× L −→ L

(t, (cos θ, sin θ)) 7−→ (cos((1− t)θ∗ + tθ), sin((1− t)θ∗ + tθ)).

Then, H is a homotopy from idL to f ◦ g. So, L is homotopy equivalent to a point.
A,C,D satisfy the same conditions as L, so A,C and D are all homotopy equivalent

to a point. B is homeomorphic to A (the map (x, y) 7−→ (−x, y) is a homeomorphism),
so B is homotopy equivalent to a point as well.

We show that U and V are homotopy equivalent to S1.

U = A× S1 [definition of U ]
≃ {p} × S1 [A ≃ {p}, products of htpy. equivalent spaces are htpy. equivalent]
∼= S1,

and analogously V ≃ S1.
We show that U ∩ V is homotopy equivalent to S1 ⊔ S1:

U ∩ V = (A× S1) ∩ (B × S1) [definition of U, V ]
= (A ∩B)× S1

= (C × S1) ∪ (D × S1) [definition of C,D]
≃ ({p} × S1) ⊔ ({p} × S1) [products/disjoint unions of htpy. equivalent

spaces are htpy. equivalent]
∼= S1 ⊔ S1.
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Exercise 13.2. Write the Mayer-Vietoris sequence for the decomposition of the torus
in exercise 13.1. Use that the Betti numbers are invariant under homotopy equivalence.

Solution.

0←− H0(X)←− H0(U)⊕H0(V )←− H0(U ∩ V )←− H1(X)←− · · ·
=⇒ [X = T 2 in our case]

0←− H0(T 2)←− H0(U)⊕H0(V )←− H0(U ∩ V )←− H1(T 2)←− · · ·
=⇒ [U ≃ S1, V ≃ S1, U ∩ V ≃ S1 ⊔ S1 and Homology is homotopy invariant]

0←− H0(T 2)←− H0(S1)⊕H0(S1)←− H0(S1 ⊔ S1)←− H1(T 2)←− · · ·
=⇒ [H0(X ⊔ Y ) = H0(X)⊕H0(Y )]

0←− H0(T 2)←− H0(S1)⊕H0(S1)←− H0(S1)⊕H0(S1)←− H1(T 2)←− · · ·
=⇒ [By lemma 1.1 in lecture notes No. 9, H0(T 2) = R.

By corollary 1.8 in lecture notes No. 9, H0(S1) = H1(S1) = R]
0←− R←− R⊕ R←− R⊕ R←− H1(T 2)←− · · ·.

Exercise 13.3. Show that b1(T 2) ̸= 0.

Solution. By exercise 13.2, we have an exact sequence

0 R R2 R2 H1(T 2) · · ·f0 g0 h0 f1
.

dim im f1 = dim kerh0 [exactness at R2]
= dimR2 − dim im h0 [rank-nullity theorem on h0]
= dimR2 − dim ker g0 [exactness at R2]
= dim im g0 [rank-nullity theorem on g0]
= dim ker f0 [exactness at R]
= 1 [f0 : R −→ {0}].

b1(T 2) = dimH1(T 2) [definition of b1]
= dim ker f1 + dim im f1 [rank-nullity on f1]
= dim ker f1 + 1 [computation above]
̸= 0 [dim ker f1 ≥ 0].

Exercise 13.4. Show that T 2 and S2 are not homotopy equivalent.

Solution. Assume by contradiction that they are.

0 ̸= b1(T 2) [exercise 13.3]
= b1(S2) [by assumption, T 2 ≃ S2, and by homotopy invariance of b1]
= 0 [by corollary 1.8 in lecture notes No. 9].

Contradiction.
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14 Exercise sheet No. 14
Exercise 14.1. Assume that Rn and Rm are homeomorphic. Show that n = m.

Solution. We use the symbols ∼= for "is homeomorphic to" and ≃ for "has the same
homotopy type as" and "is homotopic to".

We prove the result in the case where n = 0 or m = 0. If n = 0, then Rn = R0 = {0}
has exactly one point. Since Rn ∼= Rm, Rm has exactly one point as well. If m ≥ 1,
Rm would have more than one point, so m = 0. Analogously, we can show that m = 0
implies n = 0.

We prove the result in the case where n ≥ 1 and m ≥ 1. Step 1: we show that
Rn \ {0} ∼= Rm \ {0}. Let ϕ : Rn −→ Rm be a homeomorphism. Define homeomorphisms
ϕ|Rn\{0} : Rn \{0} −→ Rm \{ϕ(0)} and ψ : Rm \{ϕ(0)} −→ Rm \{0} by ψ(x) = x−ψ(0).
Then, ψ ◦ ϕ|Rn\{0} : Rn \ {0} −→ Rm \ {0} is a homeomorphism.

Step 2: we show that Sn−1 ≃ Rn \ {0} and Sm−1 ≃ Rm \ {0}. For this, define

f : Rn \ {0} −→ Sn−1 g : Sn−1 \ {0} −→ Rn \ {0}
x 7−→ x

∥x∥
, x 7−→ x.

Then, f ◦ g = idSn−1 and using the homotopy

H : [0, 1]× Rn \ {0} −→ Rn \ {0}
(t, x) 7−→ (1− t)x+ t

x

∥x∥

we conclude that g ◦ f ≃ idRn\{0}. So Sn−1 ≃ Rn \ {0}. Analogously we show that
Sm−1 ≃ Rm \ {0}.

Step 3: we show that ∀k ∈ N0 : bk(Sn−1) = bk(Sm−1).

Rn \ {0} ∼= Rm \ {0} [by Step 1]
=⇒ Sn−1 ≃ Sm−1 [by Step 2]
=⇒ ∀k ∈ N0 : bk(Sn−1) = bk(Sm−1) [Betti numbers are homotopy invariant].

Step 4: we show that if n = 1 or m = 1 then n = m. If n = 1, then

2 = b0(S0) [by corollary 1.8 in lecture notes No. 9]
= b0(Sn−1) [n = 1]
= b0(Sm−1) [by step 3]

∈

{2} if m = 1
{0, 1} if m > 1

[by corollary 1.8 in lecture notes No. 9],

which implies that m = 1. Analogously, m = 1 implies that n = 1.
Step 5: we show that if n > 1 and m > 1 then n = m. Using step 3, n > 1 and

m > 1, and corollary 1.8 in lecture notes No. 9 we conclude that ∀k ∈ N0 :1 if k = 0, n− 1
0 otherwise

=
1 if k = 0,m− 1

0 otherwise.
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This can be rewritten by saying that the following two sequences are equal:

( 1︸︷︷︸
0

, 0, . . . , 0, 1︸︷︷︸
n−1

, 0, . . .) = ( 1︸︷︷︸
0

, 0, . . . , 0, 1︸︷︷︸
m−1

, 0, . . .).

This implies that n = m.
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