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0 Review of Lie groups and Lie algebras - 05-11-2020

0.1 Lie algebras

Definition 0.1 (Lie algebra). A Lie algebra is a pair (g, |-, -]) where g is a vector space
over R and [-,-] is a map [-,-]: g X g — g which satisfies:

(a) (Skew-symumetric) Y,y € g: [z,3] = [y, 2];
(b) (Bilinear) Va,b € R: Vz,y,z € g: [ax + by, 2] = alz, 2] + by, 2];
(c) (Jacobi identity) Va,y,z € g: [z, [y, 2] + [y, [z, 2]] + [z, [z, y]] = 0.
The map [+, -] is called the Lie bracket of g.
Example 0.2 (Lie algebras).

(a) If M is a smooth manifold, then the set of vector fields on M, X(M), together with
the Lie bracket of M is a Lie algebra.

(b) Let V' be a vector space over R. Then, gl(V) := End(V), together with the Lie
bracket defined by

VT,S € End(V): [T,S] =TS — ST,

is a Lie algebra.

0.2 Lie groups
0.2.1 Definitions and examples

Definition 0.3 (Lie group). A Lie group is a group G which is at the same time a
smooth manifold, such that the maps

GxG—G G—G

(9,h) — gh, g+ g7 ",

are smooth.

Example 0.4 (Lie groups). Consider the following groups of matrices:
GL(n R) = {A € R™" | det(A) # 0},

{AeR™™ | det(A) =1},

{A ER™" | ATA = ]1m} :

{Aerm™ | AT[HA =]},

R) =
(n)
p(2n R)

_ 0 _]lnxn
J“‘(ﬂm 0 )

We will see in a future exercise sheet that each of them is a submanifold of R"*" (and
R?7*2n in the case of Sp(2n,R)). In each of these cases, the operations of multiplication
and taking inverses are smooth. So, all the matrix subgroups presented above are matrix
subgroups.

where



0.2.2 Lie algebra of a Lie group

Definition 0.5 (left invariant vector field). Let G be a Lie group. For each g € G,
define the left translation map by

L,:G— G
h — gh.

This map is a diffeomorphism with inverse L,-1. A vector field X € X(G) is left
invariant if

Vg e G: (Ly).X = X.
Define the set of left invariant vector fields of G by
XL(G) ={X € X(G) | X is left invariant}.

Remark 0.6 (right invariant vector fields). Analogously it’s possible to define a right
translation map and right invariant vector fields.

Proposition 0.7 (properties of left invariant vector fields). Let G be a Lie group. Then,
(a) XL(G) is a linear subspace of X(G);
(b) The maps

oc: X(G) — T.G
X — X

@/Jgi TeG — .’{L(G)
Vi XV, where XgV =DL,(e)V

are linear and inverses of one another, hence isomorphisms of vector spaces;
(c¢) dimX.(G) = dim G;
(d) X.(G) is a Lie subalgebra of X(G).
Proof. Exercise. O

Definition 0.8 (Lie algebra of a Lie group). Let G be a Lie group. Define g = T.G as
a vector space. Define on g a Lie bracket [-, -] by carrying over the Lie bracket of X, (G)
with the isomorphism g = T.G = X.(G), or in other words, such that the following
diagram commutes:

gxg boxdg X (G) x Xp(G)

[.,-]J jm

8 XL(G)

Then g is a Lie algebra, called the Lie algebra of G.

Example 0.9 (Lie algebra of GL(n,R)). The Lie algebra of the Lie group GL(n,R) is
gl(R™).



0.2.3 Exponential map

Definition 0.10 (exponential map). Let G be a Lie group. The exponential map of
G is a map exp: g — G given by

exp(V) = dxv(e),

where XV is the left invariant vector field which is equal to V at the identity and O3
is the time 1 flow of this vector field.

Proposition 0.11 (properties of exponential map). Let G be a Lie group. Then, the
exponential map of G has the following properties:

(a) Vt,s e R: YV € g: exp((t + s)V) = exp(tV) exp(sV);
(b) Vt e R: VV € g: exp(—tV) = (exp(tV))!;

(c) exp is smooth and Dexp(0) = id,.

0.3 Lie group actions
0.3.1 Definition and examples

Definition 0.12 (Lie group action). Let G be a Lie group and M be a manifold. A left
action of G on M is a smooth map G x M — M, (g,p) — gp, such that

o ep=p, forall pe M,
e g(hp) = (gh)p, for all g,h € G and p € M.

By the properties of the action, since g(hp) = (gh)p there is no ambiguity in the
expression ghp, so we typically omit the parenthesis.

Remark 0.13 (right actions). Analogously, it’s possible to define a right action M x
G — M, which we denote with multiplication on the right, i.e. (p,g) — pg and which
satisfies p(gh) = (pg)h.

Definition 0.14 (orbit and isotropy). Let G' be a Lie group, M be a manifold and
G x M — M be a left action of G on M. Define

o for each z € M, the orbit of x:
O, ={yeM|3geqG: gz =y}
o for each x € M, the isotropy subgroup of z:
G, ={9€G|gr=uzx}

Example 0.15 (Lie group actions).
(a) If G is a Lie group, then there is an action by left translation

L:GxG—@G
(g,h) —> Ly(h) = gh.

5



(b) If G is a Lie group, then there is an action by conjugation

C:.Gx4d—@d
(9,h) — Cy(h) = ghg™".

This action satisfies

(b.1) Cy = C,C}, (just restating the fact that it is an action);

(b.2) Cy(ab) = Cy(a)Cy(b) (Cy: G — G is not just a diffeomorphism but a Lie
group homeomorphism);

(b.3) (Cy)~' = Cy-1 (Cy is a Lie group isomorphism).

0.3.2 Quotient of a manifold by a group action

Definition 0.16 (M/G as a set). Let G x M — M be a Lie group action. Define an
equivalence relation ~ by
p~q<<dgcG:q=gp.

Then, the equivalence class of p, [p] is equal to the orbit of p, G,. Define the quotient
of M by the Lie group (as a set) by

M/G =M/ ~
={lz] [ 2 € M}
={0, | x € M}.

Definition 0.17 (free Lie group action). A Lie group action G x M — M is free if
for all z € M we have that G, = {e}.

Definition 0.18 (proper Lie group action). A Lie group action G x M — M is proper
if the map
GXM—MxM
(9,p) — (gp. p)

is proper, i.e. the preimage of a compact set is compact.

Theorem 0.19 (M/G is a manifold). Let G x M — M be a Lie group action. If the
action is free and proper, then M/G has the structure of a smooth manifold such that
the quotient map m: M — M /G is smooth and a submersion.

0.3.3 Coverings

The following facts are stated in [ ].

Definition 0.20 (covering). Let m: M — B be a smooth map. 7 is a covering map
if M is connected and for every p € B, there exists U a neighbourhood of p in B and
a family of open sets U, (for « in an index set I) such that 7= (U) = Uue; Us and for
every a we have that |y, : U, — U is a diffeomorphism.



Definition 0.21 (deck transformations). Let m: M — B be a covering. A deck
transformation of 7 is a diffeomorphism h: M — M such that moh = m. The group
of deck transformations is the Lie group

G={h: M — M | h is a diffeomorphism, 7 o h = 7}

which is equipped with the discrete topology (this uniquely determines the manifold
structure of the Lie group).

Definition 0.22 (universal covering). A covering 7: M — B is a universal covering
if M is simply connected.

Theorem 0.23 (deck transformations of a universal covering). Let m: M — B be a
universal covering with group of deck of transformations G. Then,

(a) G acts on M wvia h-x = h(x), and this action is free and proper.

(b) There ezists a unique map such that the following diagram commutes:

M — B

>
lutel R
J =1l ’

M/G
and this map ¢ is a diffeomorphism.
(¢) G is isomorphic as a group to m (B).

Theorem 0.24 (Lie). Let g be a Lie algebra. Then, there exists a unique Lie group G
which is simply connected and such that the Lie algebra of G is g.

Theorem 0.25 (universal covering of a Lie group). Let G be a Lie group with Lie algebra
g, and let G be the unique simply connected Lie group with Lie algebra g (coming from
theorem 0.24). Then, there exists a unique T : G — G which is a covering map and a
group homomorphism. In addition, ™ satisfies G = G/ ker m and ker 7 is isomorphic to
the group of deck transformations of the covering m: G — G.



1 Exercise sheet No. 1 - 12-11-2020

Exercise 1.1 (connected and path connected). Prove that if M is a connected topolog-
ical manifold then M is path-connected.

Solution. Let n be the dimension of M. It suffices to assume that p € M, S = {q €
M | there exists a path v from p to ¢}, and to prove that S = M. For this, since M
is connected it suffices to show that S is nonempty, open and closed. S is nonempty,
because p € S (the constant path at p is a path from p to p).

We show that S is open. For this, it suffices to assume that ¢ € S and to prove that
there exists U C M open such that ¢ € U C S. We claim that there exist U C M an
open neighbourhood of ¢, O C R™ open, and a homeomorphism o: U — O such that
U and O are path connected. This is because since M is a topological manifold, it is
locally Euclidean, and therefore such U, O, o exist with O possibly not path connected.
By restricting U and O, we can assume that O is a ball. So, both U and O are path
connected. We claim that U C S. To show this, it suffices to assume that x € U and
to prove that = € S. Since ¢ € S, there exists a path 7; from p to ¢q. Since U is path
connected and z,q € U, there exists a part 7, from ¢ to x. So, the concatenation of v,
and 7, is a path from p to x. So x € S. This concludes the proof that .S is open.

We show that S is closed. Let R = M \ S. It suffices to show that R is open. For
this, it suffices to assume that ¢ € R and to prove that there exists U C M open such
that ¢ € U C R. Proceeding as above, we can conclude that there exist U C M an open
neighbourhood of ¢, O C R™ open, and a homeomorphism o: U — O such that U and
O are path connected. We claim that U C R. To show this, it suffices to assume that
x € U and to prove that z € R. Assume by contradiction that x ¢ R, in other words
x € S. Then, there exists a path v; from p to x. Since U is path connected and x,q € U,
there exists a part v, from x to ¢q. So, the concatenation of v, and 75 is a path from p
to ¢. So ¢ € S, but by assumption ¢ € R = M \ S. Contradiction. This concludes the
proof that S is closed, and the proof that M is path-connected. [

Exercise 1.2 (immersions and embeddings). Show that

(a) if X is a compact topological space, Y is a Hausdorff topological space, and
f: X — Y is continuous and bijective, then f is a homeomorphism;

(b) if M is a compact smooth manifold, N is a smooth manifold, and f: M — N is
an injective immersion, then f is an embedding.

Solution. (a): It suffices to show that f~! is continuous. For this, it suffices to assume
that U C X is open and to prove that f(U) C Y is open.

U C X is open
— [by definition of closed set]
X\ U C X is closed
—> [a closed subset of a compact set is compact)]
X\ U C X is compact
— [image of compact set under continuous map is compact]
f(X\U)=Y\ f(U) CY is compact

8



—> [a compact subset of a Hausdorff space is closed]
Y\ f(U) CY is closed

— [by definition of closed set]
f(U) is open.

(b): By definition of embedding, it suffices to show that f: M — N is a homeo-
morphism in its image, in other words that f: M — f(M) is a homeomorphism. This
follows immediately from (a). O

Exercise 1.3 (matrix Lie groups). Prove the following.

(a) Show that the general linear group
GL(n,R) = {4 € R™" | det(A) # 0}
is a sumbanifold of R™*". What is the dimension?
(b) Show that the special linear group
SL(n,R) = {4 € R™" | det(A) = 1}
is a sumbanifold of R™*". What is the dimension?
(c) Show that the orthogonal group
O(n) = {A€R™™ [ ATA =10}
is a sumbanifold of R™*". What is the dimension?
(d) Show that the symplectic group

Sp(2n,R) = {A € R™" | ATJpA = Jo} ,

_ 0 _]lnxn
J“‘(ﬂm 0 >

is a sumbanifold of R?"*2"  What is the dimension?

where

Solution. (a): det: R™™ — R is continuous and R \ {0} is open. So, GL(n,R) =
det (R \ {0}). An open subset of a manifold is a manifold of the same dimension.

(b): Consider the determinant map det: R"*" — R. Then, det is a smooth map
(because the formula that defines the determinant of a matrix shows that it depends
smoothly on the entries of the matrix.) and SL(n,R) = det™'(1). We claim that 1 is a
regular value of det. To show this, it suffices to assume that A € R"*"  that det(A) =1
and to prove that Ddet(A) # 0. For any V' € R"*" by Jacobi’s formula (a formula for
the derivative of the determinant)

Ddet(A)V = det(A)tr(A~'V) [by Jacobi’s formula]
=tr(A7'V) [det A = 1].



So, for V.= A, Ddet(A)A = tr(A7'A) = n # 0. So Ddet(A) # 0. We conclude that 1
is a regular value of det. By the theorem about preimages of regular values, SL(n,R) is
a submanifold of R"*™ of dimension n x n — 1.

(c): Define Symm(n) C R™*™ to be the subset of those matrices which are symmetric.
Define f: R™" —s Symm(n) by f(A) = ATA. Then, f is well defined (because if A
is any matrix, ATA is symmetric), smooth and O(n,R) = f~1(1,x,). We claim that
1,x, is a regular value of f. To show this, it suffices to assume that A € R"*", that
f(A) = 1,xn, and to prove that Df(A): R™" — Symm(n) is surjective. For this, it
suffices to assume that S € Symm(n) and to prove that there exists V' € R™"™ such that
Df(A)V =S. We start by computing Df(A):

Df(A)V:g f(A+1tV)
dt l1=o
d
~dt o
— i (ATA+tATV +tVT A+ 2VTV)
t=0
= ATV + VT A

Define V = %AS. We show that V is as desired:

(AT +tVT) (A + V)

Df(A)V = ;(ATAS + (AS)TA)  [definition of V]

1
= §(ATAS + STATA)  [transpose of product of matrices]

1
= 5(5 +5) [S is symmetric and A is orthogonal]
=S.

We conclude that 1,, is a regular value of f. By the theorem about preimages of
regular values, O(n,R) is a submanifold of R™ " of dimension n*? — dim Symm(n) =
n*—nn+1)/2=n(n—-1)/2.

(d): Define Asymm(2n) C R*™*?" to be the subset of those matrices which are anti-
symmetric. Define f: R**?" —s Asymm(2n) by f(A) = ATJyA. Then, f is well defined
(because if A is any matrix, AT JyA is anti-symmetric), smooth and Sp(2n, R) = f~1(Jy).
We claim that Jy is a regular value of f. To show this, it suffices to assume that
A € R*™ 2 that f(A) = Jy, and to prove that Df(A): R* 2" — Asymm(2n) is
surjective. For this, it suffices to assume that S € Asymm(2n) and to prove that there

exists V' € R 2" guch that Df(A)V = S. We start by computing D f(A):
d

DAAYV = 5| f(A+V)

d

=%l
= jt tZO(ATJOA +tAT IV +tVI A + 2V T V)
= ATV + VT LA

Define V = —%AJOS . We show that V is as desired:

Df(A)V

(AT 4 tVT) Jo(A 4 tV)

10



1
= _§(ATJ0(AJOS) + (AJyS)T JyA)  [definition of V]

1
= =5 (ATLALS + STJ7 ATy A)
1
= _§(J0<]OS + SJoJo) [f(A) = Jp, S € Asymm(2n)]
=5 [Jg = 0].
Therefore Jy is a regular value of f. By the theorem about preimages of regular values,

Sp(2n) is a submanifold of R***?" of dimension (2n)* — dim Asymm(2n) = (2n)? —
2n(2n —1)/2 = 2n? + n. O

Exercise 1.4 (Lie bracket in coordinates). Let M be a smooth manifold and XY €
X(M) be vector fields in M. Let (x',...,2") be a coordinate chart on M. Show that
with respect to these coordinates, [X,Y] € X(M) is given by

X,Y]=Y <i (aj (2) g; (z) — b (x) gj‘; (m))) aii |

i=1 \j=1

Solution. For any f a real valued function on M,

Y = Y)Y 5|

=33 ) Vo) s |1
E (e 00 ) v o)

O W@ O | O
R (€@ g g + W @ g5
. Dai(x) 9 5

— V) gx(fx) 8xfi a az(x)bﬂ(m)@xiafo

S35 v g 5

=3 (S (g - P35 @) ) ot =

Exercise 1.5 (coordinate change of vector). Let M be a smooth manifold, p € M and
veT,M. Let ¢ = (z',...,2"), v = (y',...,y") be coordinate charts around p on M,
with respect to which v is written as

nooo9 noooH
v=>y a'—|, => b—.
; x| ; oy*lp
Show that
o0
al = b
; y’



Solution. For j =1,...,n, define curves +J and +J by

pon(t) = (' (p),-- -2 (p), 2 (p) + 1,27 (p), - 2" (),
$poyl(t) = D), ...v (), ¥ () +t.v " (p),....y" ().
Then, by definition of the vectors B—J, @ e T,M, aﬂ = 47(0) and % .= 77(0). We
show that aT,iI =i %,;J 807 |, . For any function f,
" Ox? 0
RECSLTRY
j=1 9y 0T
" 0x’ d ,
= - — forl)(t definition of ;2
> G o/ 210 | 2]
or? d
=38 (foglogons
> ! )0
" Oz 0
= - _(foop! definition of partial derivative
; oyt OxJ ( ) [ ]
= oy (foy™h [chain rule for maps between Eucl. spaces]
= jt fovytoyo 7; [definition of partial derivative]
t=0
d i
- & t:[)f o ’yy
0 L
= oy (f) [definition of 6iyi]'
We now complete the proof:
v hypothesis
8 ; by h; h
o Oz
=y b— [by hypothesis]
= oYl
= ¥ 0w’ 0 [by the previous computation]
=1 j= y al’]
()
B S\iS oxl |
We conclude that a’ = bZ 8”” because both sides of this equality are the components
of v in the basis {%p,...,%p}. n

Exercise 1.6 (related vector fields). Let M, N be smooth manifolds and ¢: M — N
be a smooth map.

(a) Let X € X(M) and Y € X(N) be vector fields. Show that the following are
equivalent:

12



(a.1) X is ¢-related to Y, i.e. for all p € M we have that Dé(p) X, = Yy

(a.2) The following diagram commutes:

C®(N,R) —~— (M, R)

| [P

C(N,R) —— C=(M,R)

where ¢*f = fog, X: C°(M,R) — C*(M,R) is the map f —— X(f) and
analogously for Y.

(b) Fori = 0,1let X; € X(M) and Y; € X(IV) be vector fields. Show that if X; is
¢-related to Y; for ¢ = 0,1, then [Xo, X;] is ¢-related to [Y, Y1)

Solution. (a):

Xogpr=¢"oY

<= VfeC®N,R): Xoo"(f)=¢ oY (f)

<= [definition of the maps ¢, X and Y]
Ve C¥(N,R): X(fop)=Y(f)oo

<= [two functions are equal if and only if they are equal at all points]
VfeCT(N,R): Vpe M: X,(fo¢) =Yy (f)
<= [for any function ¢g and vector field Z, we have Z,(g) = Dg(p)Zp]
Vfe CF(N,R): Vpe M:D(f o ¢)(p)X, = Df(¢(p))Ys

<= [Chain rule]
Vf e C*(N,R): Vp e M: Df(¢(p))Do(p) X, = Df(¢(p)) Yo

<= [(«<=): trivial. (=): because f is arbltrary]
Vp € M: Do(p) X, = Yy(p).-

(b): By (a), it suffices to show that [Xg, X1] 0 ¢* = ¢* o [Yp, Y1].

[Xo, X1] o= Xgo0 Xj0¢* — X;0Xg0¢* [definition of Lie bracket]
=Xgo¢* oV —Xj0¢"0Yy [X;is ¢-related to Y]]
=¢*oYyoY, — 9 oY 0Y, [X; is ¢-related to Y]
= ¢* o [V, V1] [definition of Lie bracket]. O

13



2 Exercise sheet No. 2 - 19-11-2020

Exercise 2.1 (wedge product and linear independence). Let V' be a finite dimensional
vector space and T7,...,T, € V*. Show that Ti,..., T} are linearly independent if and

only if Ty A--- AT}, # 0.

Solution. (=): Since T}, ..., Ty are linearly independent, we can extend them to a basis

Ty,...,T, of V*. Let vy,...,v, be the dual basis of V. Then,

TyN - ANy (1, .. v,) = det([T5(v))]i5)
= det([];) [by definition of dual basis]
=1
# 0.

Therefore, Ty A--- AT, #0and Ty A--- AT, # 0.

(<=): Assume by contradiction that T3, ..., T} are linearly dependent. Then, there
exist ai,...,a; € R such that % a7, = 0 and a j € {1,...,k} such that a; # 0.

Then, Ty A--- NT), = 0:

TN ANTe=Ty A ATy ATy AT A+ ATy

1 k
:Tl/\'--/\Tj_lA< > aiTi>/\Tj+1/\~~~/\Tk
Aj =1,
k ai
= > —TiANANGAANT AT A AT
= a;
=105 77

=0.

Since by assumption 77 A -+ - A Ty, # 0, we obtain a contradiction.

O

Exercise 2.2 (coordinate change of a tensor). Let T be a (2, 1)-tensor field on a smooth
manifold M. Let (U, z°) and (V,y?) be two charts on M such that UNV # &. Here 2’ and
1’ represent the coordinates on U and V, respectively. Denote by YT, the components of
T with respect to (V,3’) and “T}; the components of T' with respect to the chart (U, z").

Show that on the overlap U NV we have
Oy Ox' 927,

vpe — 29

ab ™ 9k dye yb ¥

Solution. It suffices to show that at a point pe U NV,
ype 1 Oy°| Ox'| 02

PP Ok p Oy lp OyP

"Il
p

Notice that

{ 0
y°

are bases for the vector space of (2, 1)-tensors on T, M. With respect to these bases,

a a 7 1
odf),e dybyp}aybyc, {W ed,e dx3|p}

i?j7k

® da'|, ® da’|,,
p

- 0
T|p = TEBW

14



Tl, =T, ® dy”[, ® dy’l,,

blpa

by deﬁnition of component functions of a tensor. As a consequence of the definition of

8361 ,da?, aya ,dy?, it’s possible to show that
o oo
ork Ok Oye’
02t
dz' = —dy*®
v = e
o010,
Then,
Tﬂeﬂ'®d“|®dﬂ
ab oy, Ylp Ylp
= T|p
= ka|pa IR da’l, ® da’l,
ax 8953 0
_ :L"Tk e d b )

In the computation, both the last term and the first are elements of the vector space of
(2,1)-tensors on T,M, written in the basis { (fc ® dy*|, ® dy \p} . Since the vectors

are equal, we conclude that their components in thls basis are equal as well:

dye| Oz | Oxt| .
= xT O
ab|p ok paya » |P
Exercise 2.3 (Homotopy invariace of integral, taken from | ]). Let M, N be smooth

manifolds (without boundary) with dim M = n, w € Q"(N) be a closed form on N,
fo, fi: M — N be smooth maps, and H: [0,1] x M — N be a smooth homotopy

from fy to f1 (ie., H(0,p) = fo(p) and H(1,p) = fi(p)). Show that [,, fiw = [y fiw.

Solution. Define maps tg,t1: M — [0, 1] x M given by ¢;(p) = (i, p) for i = 0, 1. Define
diffeomorphisms ¢;: M — {i} x M given by ¢(p) = (i,p), for i = 0,1. Define also
t:{0,1} x M — [0,1] x M the inclusion. Notice that 9([0,1] x M) ={0,1} x M and
that the following diagram commutes:

M—>{Z}><M—>[01]><M

E

N

| fro= [ fiw

= / (Hoto¢y)'w— / (Howo¢p)'w [the diagram above commutes]
M M

15



— / PitH / oyLoH [property of pullbacks|

U H w — / 0 [diffeo. invariance of integral]
{1}xM {0}xM
= U H*w ladditivity of integral]
{0,1} xM
= VH W [0([0,1] x M) ={0,1} x M]
([0,1]x M)
= d(v*H*w) [Stokes’ theorem]
[0,1]xM
= " H*dw [d and pullbacks commute]
[0,1]xM
=0 [w is a volume form, hence closed]. O
Exercise 2.4 (Taken from | ]). Let M be a compact orientable manifold without

boundary of dimension n, and let w € Q"'(M) be a form in M.
(a) Show that dw is not a volume form.
(b) Show that there does not exist an immersion f: S' — R.
Solution. (a): Assume by contradiction that dw is a volume form.

0 < vol(M)
= / dw  [definition of volume]
M

= w  [Stokes’ theorem]
M

[OM = o]

I
&

Contradiction.

(b): Assume by contradiction that there exists an immersion f: S' — R. Consider
the 1-form df € Q!(S'). Since f is an immersion, df is a volume form on S!. This
contradicts (a). O

Exercise 2.5 (divergence, taken from | ). Let M be a compact manifold with
boundary OM and let w € 2"(M) be a volume form on M. The divergence of a vector
field X € X(M) is the unique function div(X) € C*°(M,R) which satisfies Lxw =
(div(X))w. Show that [, div(X)w = [5,, txw.

Solution.
/ div(X)w = / Lxw [definition of divergence]
M M
= / dexw + / txdw [Cartan’s magic formulal
M M
= / dexw [w is of top degree = dw = 0]
M
= / LxWw [Stokes’ theorem)]. O
oM
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3 Exercise sheet No. 3 - 26-11-2020

Exercise 3.1. Let V be an n-dimensional vector space. A linear map 7 : V — V is called
projection if 7o = 7. If (-,-) is an inner-product on V then 7 is called orthogonal
projection if 7 is a projection and (w(v),w) = (v, 7w(w)), for all v,w € V. Using any
isomorphism ¢ : V' — R™ we see that V' has the structure of a smooth manifold with
one chart (V, ¢). With the inner product we may define a Riemannian metric as follows:
for p € V and v,w € T,V =2V we set g(p)(v,w) := (v,w). Also m(V) C V has the
structure of a Riemannian manifold with the Riemannian metric induced from V. Show
that 7 : V — 7(V) is a Riemannian submersion.

Solution. First we show that 7 is a submersion. For p € V' we have
dr(p) : T,V =2V = Ty (n(V)) = w(V),
v = m(v).

This map is obviously surjective. Moreover, ker(dr(p)) = ker(w) and ker(dn(p))t =
ker(m)*. Now we show that

dr(p) : ker(m)= — 7 (V)

is an isometry i.e. g(w(p))(dn(p)v,dr(p)w) = g(p)(v,w) for all v,w € ker(dn(p))t. More
precisely, we show that (r(v), m(w)) = (v, w), for all v,w € ker(m)*. The proof is the
following computation:
(r(v),m(w)) = (mm(v),w) [r is an orthogonal projection]

= (m(v),w) [ris a projection]

= (v, w) [v — 7m(v) € ker m and v € ker 7). O
Exercise 3.2 (Hopf fibration). Let S® = {(z1,22) € C?*| |21|* + |22]* = 1} and S? =
{(z,2) e Cx R | |z|* + 2% = 1} then the Hopf fibration is given by 7y : S® — S

(21, 22) = (22129, |21]? — |22/%). Since C?* = R* and C x R = R3? show that 7y :
(53, 93) — (S2,(1/4)gs) is a Riemannian submersion.

Solution. Consider the following parametrization for S®. In polar coordinates we have
21 = r1e®t and 2y = 12€"? where 7,79 > 0 and @1, s € [0,27). Then

S* = {(ret, 12e"%) | 14,73 2 0,7 +73 = 1,01, 05 € [0, 27) }
~ {(cost)en sinw)e=) | v e 0.3] o102 € [0,27)

2
= {(?/17901,%) | ¥ € {07 q P11, P2 € [0727)}-

2

Consider the following parametrization for S?. In polar coordinates we have z = re”,
where r > 0 and n € [0,27). Then

S? = {(Tei”,x) lzeR,r>0,2"+r=1n¢ [0,27r)}
= {(sin(€)e™, cos(€)) | € € [0,7],m € [0,27) }

17



={(&n) [ €€ [0,7],n €0, 2m)}.

Then 7g(cos(1))e!, sin(vp)e#?) = (sin(2¢))e’?1=#2) cos(2¢))) and hence in the new coor-
dinates my (¥, 1, p2) = (20,1 — 2 mod 27). Then the derivative is

20 0
dWH(w79017902) = ( 0 1 —1 > :R?’ _>R2'

This is obviously a surjection. Its kernel is ker(dmy(v, 1, p2)) = span{es + ez} =
span {6%1 + 8%2}. Now we compute the metrics g3 and g, in the coordinates (1, ¢1, ©2)
and (&,7), respectively. Since S* C R* and (zy, ..., 74) are the standard coordinates on
R* we have

x1 = cos(¢) cos(ipy),
x9 = cos(v) sin(¢1),
xg = sin(v)) cos(p2),
x4 = sin() sin(ps).

Which implies

dzy = —sin(¢) cos(i1)dip — cos(v) sin(1)depn,
dxy = —sin(v) sin(¢y)dip + cos(v) cos(py)depr,
dxs = cos(1) cos(pg)dip — sin(¥) sin(ps)deps,
dxy = cos(¢) sin(ps)dip + sin(1)) cos(pa)deps.

Hence by computation we see

g3 = dr1 Q@ dry + dry ® dre + drs @ drs + dry ® dry
= dip @ dip + cos?(Y)dp, @ dpy + sin®(V)dps @ dp,.

Since S? C R3 and (y1, y2, y3) are the standard coordinates on R? we have

y1 = sin(§) cos(n),
Y2 = sin(§) sin(n),
ys = cos(n).

Hence

din = cos(£) cos(n)de — sin(€) sin()dn,
dyz = cos(&) sin(n)d€ + sin(&) cos(n)dn,
dys = —sin(§)d§.

Hence, computation yields

g2 = dyy @ dyy + dys @ dyz + dys @ dys
= d¢ ® d€ + sin®(€)dn @ dn.

18



Now we compute ker(dmy(¢), @1, ¢2))*. Let v = a% + ba%l + Ca%z then the condition

g3 (v, 8%1 + 8%2) = () gives the equation

cos?(1)b + sin?(¢)c = 0.

Assume now that ¢ # Z. Then b = — tan®(¢)c and hence

ker(dWH(w,%,W))l:Span{a ~ tan’(y) ; i : }

o’ Op1 Do
1 0
= span 0|, —tan?(®)
0 1

Let now v, w € ker(dmy (¥, @1, 02))7F, ie.

'U:’Uli—i—'l}g <—tan2(z/1) 0 + 0 ),

20 dpr - Ops
0 5 0 0
w—wlaijwQ( tan (w)a%—ka%).

Then
g3(v, w) = viw; + vawy tan?(v).

On the other hand we have

1
Zg2<d7TH(¢a @1, 02)v, dTa (), 01, P2)w)

9 0 0 B
= 41192 (21}1% — U2 (tanQ(w) + 1) o 21018*é — Wy (tanZ(w) + 1) 877)
= i (4v1w1 + sin®(21))vpwy (tan2(¢) + 1)2>
= g3(v,w). 0

Exercise 3.3 (metric on quotient by Lie group). Let G be a Lie group, (M, g) be a
Riemannian manifold and G x M — M be a free and proper action of G on M by
isometries. So, we can form the quotient manifold M /G, which comes with a projection
m: M — M/G which is a surjective submersion. Show that there exists a unique
Riemannian metric h on M /G such that 7 is a Riemannian submersion.

Solution. We prove uniqueness. For p € M, note that T,M = ker Dr(p) & ker D7(p)*
and consider the following commutative diagram:

1

ker D7(p) @ ker Drr(p)* 2 Lker Dr(p)*t
I QP
Lp ~| Dr(p)ot -

ker D7(p) ————— Tu(nM/G
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7 being a Riemannian submersion implies that Dr(p) o ¢ : ker Drr(p)™ — Ty M /G is
an isometry, and this condition uniquely determines h ).

We prove existence. For each p € M, define an inner product hrqy on Ty M/G by
requiring that D7 (p) o ¢, : ker Dm(p)*t — Tr()M /G be an isometry. We need to check
that m(p) = 7(q) implies h(p) = h(q). By definition of m, w(p) = 7w(q) is equivalent
to there existing an a € G such that ¢ = ap. We also denote by a the induced map
a: M — M by a € G and the action. By definition of 7, we have that m o a = 7 and
Da(p): T,M — T, M maps ker D7(p) to ker Dm(g). Since a is an isometry, Da(p) maps
ker Dr(p)* to ker Dmr(g)*. We now write a commutative diagram like the one before,
but relating the tangent spaces at p and ¢:

ker D7 (p) @ ker D7(p)* ker D7 (p)+

Da(p)
/ T Ka(p)
ker Drr(q) @ ker D7r(q)* ker D7r(q)* D (p)ouy
\; D7r(q)0LqL

ker D7 (p) 5 TrimyM/G

Da(p)
/ A
ker D7 (q) 5 TrgM/G
This diagram is commutative by the discussion above. To show that hrp) = hx(g), it

suffices to show that id: (T M/G, hey) — (TrgyM /G, hx(g) is an isometry:

id is an isometry

<= idoD7(p) o Lj >

<= Dr(q) oty o Da(p) is an isometry [the diagram commutes]

Is an isometry [7(p) o 17 is an isometry]

< true [Da(p) and D7(q) o ¢, are isometries].

Therefore, all the inner products h.(,) for p € M assemble into a Riemannian metric h
on M/G. By the discussion above, 7 is a Riemannian submersion. O

Exercise 3.4 (isometries of R™ and S™).

(a) Consider Isom(R", ggn) = {h: R”™ — R" | h is a smooth diffeomorphism, h*gg» =
an}.

(a.1) For xz,y € R™, define
A={a:[0,1] — R" | a is of class C*, a(0) = x,a(1) = y}
1
L(a) = [ la(r)ldr.
0

Show that ||z — y|| = infaeq L(a).

(a.2) Let h € Isom(R"™, ggn). Show that h preserves length, i.e. ||h(x) — h(y)| =
|z — y]| for all z,y € R™.
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(a.3) Show that h is of the form h(x) = Az+0b, for A € O(n) and b € R". Conclude
that Isom(R", ggn) = {x — Az +b| A€ O(n),b € R"}.

(b) Consider Isom(S™, ggn) = {h: S® — S™ | h is a smooth diffeomorphism, h*ggn =

(b.1) For z,y € R™™!\ {0}, define
A= {Oi: [0,1] — R™™\ {0} | ais of class C*, a(0) = z, (1) = y}
L(a) = /0 & (7)|dr.

Show that ||z — y|| = infaea L(a).
(b.2) Let h € Isom(S™, ggn). Define h: R*™1\ {0} — R\ {0} via

- T
h(z) = quh().
Igdl
Show that h: R™™1\ {0} — R"*1\ {0} is an isometry.
(b.3) Show that h preserves length, i.e. ||h(z) — h(y)|| = ||z — y|| for all z,y €
Rn-ﬁ-l \ {0}

(b.4) Show that h: R™\ {0} — R™\ {0} can be extended to a continuous map
h: R — R such that ||h(z) — h(y)|| = ||z — y|| for all z,y € R™1,

(b.5) Show that h is of the form h(x) = Az, for A € O(n). Conclude that
Isom(S™, ggn) = {x — Ax | A€ O(n)}.

Solution. (a.1): We show that ||z — y|| > inf,eq L(c). For this, define v(t) = x+t(y—x).
Then, v € A and ||z — y|| = L(v) > infaea L(a). We show that ||z — y|| < infaea L(a).
For this, it suffices to assume that v € A and to prove that L(y) > ||z — y||. The proof
is the following computation:

1
L(y) = / |7(7)||dr  [by definition of length]
0

|

= ||z — 9| [fundamental theorem of calculus].

(a.2): Pick z,y € R™ and let o : [0,1] — R"™ be a curve such that «(0) = x and
a(l) =y. Then

i(hooz)(T)

Loy = [ o)l dr = [ ldh(atrae)lar = [

dr = L(ho «).

Set B = {3:10,1] — R™ | B is of class C', 3(0) = h(z),5(1) = h(y)} to be the set of
curves joining h(z) and h(y). We claim that the map
' A— B,a+— hoa.

is bijective. To see this first we check injectivity. Assume that I'(ay) = T'(ag) i.e.

h(ay(t)) = h(ag(t)), for all t € [0,1]. Then A~ (h(ay(t))) = A~ (h(az(t))) which implies
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a1(t) = as(t), for all t € [0,1]. Now we check that I' is surjective. Let 5 € B. Then,
lopeAdand T'(h™' o) = . So we conclude that T is bijective. Hence

2 = yll = inf L(a) = inf L(T(@)) = inf L(8) = [h(x) = h(»)].

(a.3): Consider h := h — h(0). Then h is an isometry of R" fixing 0. From step (a.2)

we have that U H = ||z|| for all z € R™. We also have that <h( ),E(y)> = (x,y) for
all z,y € R". Indeed,
(). ) = 5 ([F + [ - [Fo) B
= 2 (lalP* + ol ~ fy — =P)
= (,9) .

Next we show that h is linear, i.e. h(z +y) = h(z) + h(y) and h(Ax) = Mh(x) for all
z,y € R" and all A € R. Let ey, ..., e, be the standard Euclidean basis of R™. Then by
the previous computation we have that h(e1),..., h(e,) is an orthonormal basis of R™.
Hence for every x € R™ we consider its representation in the basis h(ey), ..., h(e,), i-e.

= i<ﬁ(m),ﬁ(ei > \:/ i (z,e;) hie;).

i=1 Step 3 1=

—_

Hence this implies that h is linear. Since A is linear and maps an orthonormal basis to
an orthonormal basis we have that there exists a matrix A € O(n) such that h(z) = Az
for all z € R™. Hence h(z) = Az +b, where b = h(0). Since h was arbitrary, we conclude
that Isom(R", ggn) = {x +— Az +b| A€ O(n),b € R"}.

(b.1): In the case where 0 € R™™ does not lie on the segment [x,y] we proceed
as in (a.l). Assume now that 0 € [z,y]. By the same argument as before we have
|z — y|| < infaea L(a). To show the other inequality we proceed as follows. Since 0 is
in the line segment [x,y], we may assume (after possibly switching the roles of = and y)
that y = Az for some A < 0. Let n € R\ {0} be a unit vector orthogonal to z —y. We
consider the sequence of curves in R"™\{0} defined by

x4+ 147, tefo,i—L]
N - -
B —x—ir(t %—l—%)(n—x), tE|3— %13
() = +(t—3) - te il d]
N” 2) Y 77v1 1222 T W]

1 1 1\ Y nNY 1 1
ty+(t—-31-%) L e [f ]

Then vy € A and

1 1 1 1 -
L) = llall (1= 3¢ ) + Il =l 5 + ly = ll 57 + Iyl (1= 5 ) =5l +

Also, note that
=]l + lyll = llz —yll
since y = Az, where A < 0.
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(b.2): We show that h : R*™\{0} — R"\{0} is an isometry. It suffices to show
that h is bijective and that for all z € R*™1\ {0}, the linear map dh(z) is an isometry,
because in this case h would be a bijective local diffeomorphism.

h is injective: Assume h(x;) = h(zs). Then

b () = ()

which implies that ||x;|| = ||z2||. Hence

(o) =+ ()

Sin(ie h is an isometry we have that x; = xs.
h is surjective: Let y € R™™\{0}. Then,

Y
== i (557
is such that h(z) = y.

Next we compute dh(x). For a path () in R*™ such that v(0) = z and 4(0) = v €

T,R"*! = span {z} & span {z}" = span {z} & Toe S™ we have

2| h((®) = dh(z)v

-t () e () [~ S

ey = i )

and if v € span {z} then v = Az for some A € R and

e = Al 7y)

Finally, show that dh(x) is an isometry. For v = v/ ® Az and w = w' @ px we have

(d x)de w)

(dh(z)v' + Adh(z)z, dh(z)w + pdh(z)x)

() o et () (g ) ot (55
ac H)“ () o)+ ot o () 0 (i)
et (g o (g )+t (n () )

23
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= (v, ) + M [l
= (', w') + Az, y)
= (v,w) .

(b.3): For z,y € R"™M\{0} recall the set A from the previous step. Set now
B = {B :10,1] — R™™\{0} | C* with 8(0) = h(z), 5(1) = E(y)}. Then as in the pre-

vious exercise we have a bijection
r-A—B, a—hoa
and for all & € A we have L(a) = L(I'(«v)). Thus, as in the previous exercise, we deduce

&~ yll = inf L(a)

(b.4): h is continuous on R™™\{0}. To check continuity at 0 we proceed as follows.
Let x, be a sequence in R"*! such that x,, — 0 as n — oo. Then

as n — oo since h is bounded. So h is continuous as a map R*"*! — R"*1. It remains
to show that ||h(z) — h(y)|| = ||z — y| for all z,y € R*™L. If z,y € R"\ {0}, then the
result is true as we have proven before. If x,yy = 0 then the result is also true because

h(0)=0. If y =0 and z # 0, then
|x||h( )H—n
|||

(b.5): Repeat the proof of (a.3). O

i) =R = )] =
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4 Exercise sheet No. 4 - 03-12-2020

Exercise 4.1. Show that the stereographic projection is a conformal equivalence between
SE\{N} and R™.

Solution. Denote p =o' = (£,7) =R" — S%\ {N}. p is given by

2R lu|* — R?
= R .
plu) <|u!2+R2’ |u|2+R2>

Denote by ¢: S%\ {N} — R™"! the inclusion map and p = 1p: R" — R""! (which is
given by the same formula as p). We want to show that gsr. = fo"grn, for some positive
function f on M. Consider the following sequence of equivalences:

Af € C°(M,R*): gsp = fo"grn
< 3f € C*(M,R"): P gsy = fgrn
< 3f € C°(M,R"): p*t*grn+1 = fgrn
< 3f € C°(M,R"): p*ggnt1 = fgrn
<= 3f € C°(M,R"):
Yu € R":
vV, W e T,R" = R":
(A" grnr1)u(V, W) = fgrn)u(V, W)
< 3f € C°(M,R"):
Yu € R™:
YV, W e T,R" =R":
(grn1)5) (Dp(w) V. Dp(u)W) = f(grn)u(V, W).

Given this, we start by computing Dp(u). We know that Dp(u)V = D(&,7)(uw)V =
(DE(u)V, D7 (u)V). We compute DE(u). Since & = ﬁ& it’s derivative is

kuk+R27
O&t  2R*0L(uu + R?) — (07uf + w0} )2 R’
oul (ukuk + R2)?
2Rt (uFuF 4+ R?) — AR*u'u?
(uFuk + R2)? :

So,
38} 2

De() = |55, = s o

(R*(|ul? + R*)I — 2R%uu).

_ pufuF—R?
We compute D7 (u). Since 7= Rz,

or R2ui(uku’l‘C + R?) — 2ui(ufu® — R?)

ou’ (uFuk 4 RQ)

B R2ui Fub + 2u' R? — 2ulufu® + 2u' R?
(ukuk +R2)

it’s derivative is
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4ut R?
(Wb + R2)?

uz’

=4AR————— .
(ukuk + R?)?2
So,
T AR3
D =|—| =—— 47
7(u) {uzl (|u|2+R2)2u

We now compute (grn+1)s(u) (Dﬁ(u)V, Dﬁ(u)W).
(981 )500 (DP()V, DB(w) V)

= ((D&(w)V, Dr(w)V'), (DEW)W, Dr(w)W))

(DEV,DE)W) + (Dr(w)V, Dr(w)W)_

RTL

= (Dg(w)V)" DE(u)W + (D7 (w)V)" D ()W

2
2 2 2 2 T
<(|u|2—|—R2 5 (R?(Jul? + R)I — 2R*uu )) W

3 4R3
(|UI2 + B2 (JuP + R2)?
B 4
 (Jul? + r2)
B 4
 (Jul? + R2)
16 R°
T+ )
_ MW(M(W R — 4RO +
B 4
 (Ju? + r2)
B 4R*
= (P + 727
B 4R
=
Exercise 4.2 (naturality of Riemannian volume element). Let ¢ : M — N be a diffeo-
morphism of orientable manifolds. Then for any metric ¢ on N we have

©*Vol, = eVol,-,

+ VT ul W

16 RS
(lul* + Rr?)*
VI (RY(Juf? + BT — 4R (Jul® + R?)uu” + 4R"|uluu” )W

V(R (juf + RA)I — 2R*uu”) W + VT uu W

VTuu W

7(|u|2+R2)4v uuw W
VI (RY(ju? + R’ )W
vVIiw

where € € {1} and corresponds to the case where ¢ is orientation preserving or orien-
tation reversing.

Solution. Let (Uy, ¢q) be a chart on M and (V3,13) be a chart on N such that ¢(U,) C
V. On Vj we denote the coordinates by y* while on U, we denote the coordinates by
27. Then the metric g is of the form

g = gijdy' ® dy’
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and the volume form
Vol, = \/det (gi;(y))dy" A ... Ady".

Hence

oyt oy"

On the other hand we have
oy Oy’

83;8 %dl’s ® dl‘t.

oy
det < 8:153)

As a result, we have that if ¢ is orientation preserving then det (

h=@*g = hydz® @ dzt = g;;(p(z))

Hence

Vol,, = \/det (95 ((x))) dz' A ... A da™.

gi’s> > 0 and we have
Ayt
oxs

¢*Vol, = Vol,+,. While if ¢ is orientation reversing we have det ( ) < 0 and hence

©*Vol, = —Vol, .

Exercise 4.3 (bi-invariant volume element on Lie group). Let G be a compact connected
Lie group and g be a left-invariant Riemannian metric on G. Show that:

(a) Vol, is a left-invariant form on G;
(b) For every h € G, we have that R;Vol, is a left-invariant form on G

(c) For every h € G, we have that Rj;Vol, is a positively oriented form on G (Hint:
consider the map G — GL(g) given by h — DL, (h™')DRy,-1(e) and recall that
GL(g) has two connected components, one of matrices with positive determinant
and one of matrices with negative determinant);

(d) For every h € G, there exists a unique ¢, € R such that ¢, Vol, = R} Vol;
(e) The map ¢: G — RT is a Lie group homomorphism;
(f) Vol, is a right-invariant form on G (Hint: it suffices to show that ¢(G) = {1}).

Solution. (a): It suffices to assume that h € G, p € G and to prove that (LjVol,)|, =
Vol,|,. We claim that there exists (U, z', ..., 2™) a coordinate neighbourhood of Ly (p) on
G such that L, (U)NU = @. To see this, let U’ be a coordinate neighbourhood of Ly, (p)
and V' be a coordinate neighbourhood of p such that U’ NV’ = & (these exist because
G is Hausdorff), and define U = U' N Ly (V’). Then U is as desired, and we can define a
(V,y',...,y") a coordinate neighbourhood on G by V = L, (U) and 3/ = 27 o L;,. With
respect to these coordinate neighbourhoods, the Riemannian metric g is written

N Ui '
gluv = Zgijd:c ® da?,

ij=1
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glv = > ghdy' @ dy’.
Q=1

From these expressions and using the fact that ¢ is left-invariant, we conclude that
9i; = G5 © Lt

Y ghdy @ dy = glv
Q=1
= L (glv)
=Ly > ggdxi ® da?

ij=1
=> (gg o Ly)dy' ® dy’.
ij=1

We now show that (L} Vol,)|y = Vol,|y:

(L, Volg)|v = Lj (Voly|u)
= Lyy/det(gf)da! Ao A da”
= \/det(g5 o Lp)d(z" o L) A ... Ad(z" o Ly)

= \Jdet(g¥)d(y") A ... Ad(y")

= VOlg|V.
(b): It suffices to assume that [ € G and to prove that L;R;Vol, = R;Vol,.

L;RyVol, = (R, o L;)*Vol,
= (L; o Ry,)*Vol,
= R} L;Vol,
= R} Vol,.

(c): Consider the map

o: G — GL(g)
h —s DLy, (" )DRy-1 (e).

We claim that it suffices to show that for all h € G the map ®,: g — g is positively
oriented. This is because by definition of orientation of Tj,-1G the map DL, (h™') is
positively oriented, therefore ®j: g — g is positively oriented if and only if DRj-1(e)
is positively oriented.

Recall that GL(g) has connected components det ' (R*) and det ™' (R™). We need to
show that ®(G) C det™'(R*), because in this case every ®, is a matrix with positive
determinant, hence preserves orientation. We know that either ®(G) C det™'(R*) or
®(G) C det™'(R7), because ® is continuous and G is connected. Since ®(e) = id, €
det ' (R*), we conclude that ®(G) C det ™ (RT).

(d): Uniqueness is obvious. We prove existence. We claim that there exists a unique

¢n € R such that ¢, Voly|. = (R} Voly)|.. This is because Vol,|. and (R} Vol,)|. are
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nonzero elements of the one dimensional vector space Aj_; TG, so they are multiples of
each other. Since Ry, is positively oriented, we also know that ¢, is a positive number.

(e): We show that ¢ is smooth. For this, it suffices to show that the map h
(R;Vol,)|e is smooth. Since for any vy,...,v, € T.G we have (R;Vol)|c(v1,...,v,) =
Vol, |, (DRy(€)vy, . ..,DRy(e)v,) and that Vol, is smooth, it suffices to show that for any
v € T,G the map h — DRy,(e)v is smooth. Let v be a curve such that v(0) = e and
4(0) = v. Then,

d d

DRu(eJv = q;| _ Bn(v(8)) = 3|

By definition of Lie group, this expression is smooth in h.
We show that ¢ is a homomorphism.

PptqVoly = ¢, R, Vol, [definition of ¢,]

= R, ¢, Vol, [pullbacks are linear]
[
[

v(s)h.

= R, R, Vol, definition of ¢,

= (R, o R,)"Vol, [functoriality of pullbacks]
= R, Vol,

= ¢4 VOl [definition of ¢g,)].

(f): Since ¢ is continuous and G is compact, ¢(G) C RT is a compact subset. Also,
the image of a group homomorphism is a subgroup so we conclude that the set ¢(G) is
compact and a subgroup of R*. We show that if K is a compact subgroup of R*, then
K = {1}. For this, assume by contradiction that K has an element A € R™ \ {1}. Then,
{\"}hen is a subset of K because K is a subgroup. We claim that the sequence \,, does
not have a convergent subsequence. If A > 1, then A, diverges to oo, and if A < 1 then
An “converges” to 0 which does not belong to R™. So the sequence )\, does not have
convergent subsequences. This contradicts the fact that K is compact. O

Exercise 4.4 (reparametrizations). Let v : [a,b] — M be a piecewise C'!' path with
partition a = a1 < ay < ... < a; = b. Furthermore, assume that §(t) # 0 for all
t € |a;,a;4q] for all ¢ = 1,...,k — 1. Denote by L = L([y]). Show that there exists a
unique reparametrization 4 : [0, L] — M with unit speed, wherever it exists.

Solution. First we prove the statement for C! paths (not piecewise). Let 7 : [a,b] — M
be a C' path such that §(t) # 0 for all ¢t € [a,b]. Set L := L([y]) and consider the
arc-length function

st) = [ @), dr, e fa0)

Then we have that s(a) = 0, s(b) = L and s is of class C'. Since 4(t) # 0 for all ¢ € [a, D]
we see that

$(t) = ly®)ll, >0
which implies that s is strictly increasing. Hence s is a strictly increasing homeomorphism

and by the inverse function theorem we conclude that the inverse of s is C*, too. Denote
the inverse of s by ¢ : [0, L] — [a,b]. Its derivative is

() = s =
Y0 = 5w T e
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Consider the curve ¥ =yo ¢ : [0, L] = M. Then

=1.

wﬂh—nwwﬂwvmf4wwvmuwwv»ﬁ

Now for piecewise C! paths. Let now « : [a,b] — M be a piecewise C! path with a
partition a = a1 < as < ... < aj, = b such that |, 4, is of class C* foralli = 1,...,k—1
and such that §(t) # 0 for all t € [a;, a;41] foralli =1,...,k—1. Denote L1 = L(7|a;,a5])
Lo = L(V|jus,a3))s s L1 = L(V|[ag_r,a]) and €1 = Ly, by = Ly + Lo, ..., {1 = 7=} L.
As before, consider the functions

t
si:fon,a] > [0,0], si(t) = [ 15D, dr,
t
it [a ] = [, 6, si() = lia + [ IR0, dr,
foralle=2,...,k — 1 and

si(t),  t€ ay,asl,
so(t),  t € [ag, as),
s(t) = ¢ s3(t), t € [as, ad],

Skfl(t), t e [ak,l,ak].

We wish to show that s is a strictly increasing homeomorphism such that s, q,,,) s
C'-diffeomorphism. It follows immediately that s is strictly increasing, continuous and
S|[as,ai1] 1S & CO'-diffeomorphism for all 4+ = 1,....,k — 1. As in the non-piecewise case
denote for every i = 1,....k — 1, 1 : [0,61] — [a1,aq] and @; : [l;—1,0;] — [a;, a;41] the
inverse of s; and s;, respectively. Then ¢; is a C'-diffeomorphism. Define

ei(1), T E€0,4],
©a(7), T € [l Lo,
(1) = p3(1), 7€l L3],

Orp-1(7), T € [lr—2, k1]

Then ¢ is continuous, ¢ is the inverse of s and ¢|j,) and ¢|(4, ¢,,,) is a C*-diffeomorphism.
As in the non-piecewise case 7y o @ is the desired parametrized curve. O]
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5 Exercise sheet No. 5 - 10-12-2020

Exercise 5.1 (Riemannian manifolds are metric spaces). Let (M, g) be a Riemannian
manifold. Show that the function d,: M x M — R given by

dy(p,q) = inf{L(y) | v: [0,1] — M is a piecewise C"' path with v(0) = p,v(1) = ¢}
is a metric on M, i.e. that it satisfies

(a) dy(pq) =0 & p=g;

(b) dy(p,q) = dy(q,p);

(¢) dy(p,q) < dy(r,p) +dy(q,7).

Solution. (a): We show that d,(p,p) = 0. For this, let p be the constant curve at p.
Then, d,(p,p) = inf, L(v) < L(p) = 0.

We show that p # ¢ implies d,(p,q) > 0. For this, it suffices to show that there
exists a constant D > 0 such that for every v a piecewise smooth curve from p to ¢ we
have that L(y) > D > 0. Choose a coordinate chart ¢p: U C M — U’ C R" centred
at p such that ¢ ¢ U. Then, we can write the Riemannian metric g with respect to this
coordinate chart: for x € R", and u,v € T,R" = R",

(67)"9)a(u,v) = (u, A(2)v)rn

for some matrix A(z) which is symmetric and positive definite. Choose r > 0 such that
the closed unit ball B,.(0) is contained in U’. Define

C' = min{(u, A(x)u) | v € R", ||u|| = 1,z € B,(0)}.
(' is well defined because the set over which we are taking the minimum is compact, and
C > 0 because A(x) is positive definite. We claim that D := C'/?r is the desired constant.
To see this, we assume that v is a curve from p to ¢ and we must show that L(vy) > D.
Choose a € R such that v([0,a]) C ¢7'(B,(0)) and v(a) € ¢~(S.(0)) = ¢~ 1(0B,(0)).
Define ¢: [0,a] — R™ by ¢ = ¢ 0. Then,
b C\1/2
L() = [ 9(3(0),5(0)"dt
> ["gt0).4(0) " ar
= [ (), AG)i)iiat
0
> [F Vet et
0

/0 " e(t)ae ’
= CY?|\c(a) — ¢(0) | rn

= CY?y.,

(b): We show that d, is symmetric. Define

A:{Oéi[0,1]i1>M|OK(O):p,OC(1)ZQ}7
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B= {5 110,11 5 M | B(0) = g, 8(1) =p}.
Then

r-A—n
a— (t—a(l —1t))

is a bijection and L(a) = L(I'(«)), Vo € A. Hence

dyg(p,q) = inf L(a)

acA

= inf L(I(0))

(c): We show that d, satisfies the triangle inequality. Let 73 be a C' path joining p
and 7 and let 7, be a C' path joining r and ¢q. Then ~ := 7; o v, which is defined by

1
0,3

1
301

is a piecewise C'' path joining p and ¢ and one can check that

L(v) = L(m) + L(72)-

Then we have that
dy(p,q) < L(m) + L(72).

Since 7; and 7, were arbitrary path’s we take the infimum over all +; joining p and r
and we obtain

dy(p,q) < dy(p,7) + L(72).

Taking now the infimum over all v, joining r and ¢ we obtain the triangle inequality. [

Exercise 5.2 (connection on R™). On R™ we have the Euclidean connection which is
defined as follows. For vector fields X = (X',..., X") and Y = (Y!,...,Y") on R" and
p € R" we define

(VXY) ) = (Xi(p)%j:i(p), . ,Xi(p)%};j (p)> :

Show that VX" is a connection and that for vector fields X,Y, Z € C*(TR") we have
Vxgrn (Y, Z) = gre(VxY, Z) + gr (Y, Vx Z)

and
VY - V¥ X = [X,Y].
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Solution. Let X = XZ 8 and Y = YJ - be two vector fields in R" and let f : R* =+ R
be a smooth function. Then

(V5Y) () = FOX D () = ) (VEY) (),
and
. LAY 0
(VX () () = X' (0) =5 (1) 5
of B N C;

= X'(0) 55 D)V (0) 55 + T D)X (D)5 ()
= X(HY @) + f) (VEY) ().

Moreover, its obvious that V®" is R-linear in both arguments. Hence V®" is a connection
on R”. Let now Z = Z* a%k be another vector field on R™. Then

X(gen (Y, Z)) (Z YZZZ) = é:l l<g§k> Z'+Y? (gi)] X*,

and
n oYk o s,
(VXY Z X 77—
gen(Vx ¥, 2) = 0zt 0" Oad
p oYk
= X'z o Okj
oY
= X' 71—
oxt
and
n 0 N VAN
R _ i Y oy Y
grn (Y, Vx Z) = ggrn (Y S’ , X o axl>
8Zl
_ Y]Xli
ox?
079
—_yixiZ?
oxt’
For the vector fields X and Y we have
aY'? 0X"\ 0
XY =|X'—"— —Y/ - | —.
X, Y] ( oI 8x3> oxt

Moreover,

Yt o - X" 0
- X=Y -
oI Oxt’ and - Vy oxI Ozt

Exercise 5.3 (extending functions and vector fields). Let M be a manifold and M c M
be an embedded submanifold. Denote by ¢: M — M the inclusion map. Show that

VEY = X7 O

(a) If f € C®(M,R), then there exists f € C°°(M,R) such that fo. = f.
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(b) If X € ¥(M), then there exists X € ¥(M) such that X is i-related to X.

Solution. (a): Since M C Misa submanifold, there exists a chart (Ua, Pas f/a) on M such
that 9o = @ : Uy = UyNM — V,N(R*x {0} ) =V, is a diffeomorphism. Consider the
—~—

eRn—F
function fo = fo@ ' : Vo = R, written as fo = fa(azl, ). Consider the extension
f& Vo = Rogiven by f&(z!,2%,...,2") = fa(z',...,2"). Then f, : Uy — R defined by

fa [ o pq is an extension of f on U Choose now a collection of charts (Ua, goa) on
M that cover M and consider also Uy = M\ M is open. Then Uy, U, is a cover of M and
we choose a partition of unity pa, po subordinate to the cover. Then f = py + X Pafa
is an extension of f.
(b): Since M C M is a submanifold, there exists a chart (Us, @a, Va) on M such that
Yo =@a:Us=U,NM —V,N (R* x {0} ) =V, is a diffeomorphism. The vector field
~—

eRn—F
X in the coordinates given by the chart (Uy, @a, Va) is of the form

0 0
_ -1 -1 _ vyl k
Xa(x) - d(pa(goa (I’))X(g&a (.I’)) =X ( )8:1:1 + . +X ( )8xk’
where z = (z', ..., 2¥) € V,. Extend the functions X*(z) on all of V, as in the first part

and we obtain a vector field X&* on V.. Hence we obtain a vector field X, on U, by

Xa(p) = dg (2a(p) X5 (Palp))-

For p € U, we have

Choose now a collection of charts (Ua, Do) ON M that cover M and consider also Uo
M \M is open. Then Uy, U, is a cover of M and we choose a partition of unity pa, po
subordinate to the cover. Then X = Y, poXa is an extension of X. O]

Exercise 5.4 (connections are local). Let M be a manifold and V be an affine connection
on M. Prove that VxY|, only depends on X, and on the values of Y along a curve
tangent to X,.

Solution. Let (U,z',...,2") be a coordinate neighbourhood of p. Recall that the affine
connection can be given in coordinates by

VXY:Z( Y) + Z I kX’Y’“) az
i=1 k=1 O
At the point p, this expression becomes
vXYy,,_Z(X v+ ST, XW’“) 88
xZ

i=1 jk=1
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Notice that if 7 is a curve tangent to X at p, i.e. 7(0) = p and (7)(0) = X,, then

%0 = 5| Y.

This proves the result. [

Exercise 5.5 (connection on submanifold). Let N be a manifold, M C N be an em-
bedded submanifold, and ¢: M — N be the inclusion map. Let ¢V be a Riemannian
metric on N and define g™ = 1*¢", which is a Riemannian metric on M. For every
p € M, we can consider the orthogonal complement T, M+ of T,M inside T,N. We have
the decomposition T,N = T,M & T,M*. In other words, for every v € T,N there exist
unique v’ € T,M and v+ € T, M~ such that v =v" +v*. If V¥ is an affine connection
on N, define an affine connection VM on M via

VY = (ViY) '
where X,Y € X(N) are extensions of X,Y € ¥(M) to N. Show that
(a) VM is well defined and a connection.
(b) If V¥ is symmetric then VM is symmetric.
(c) If V¥ is compatible with ¢g"v then VM is compatible with g™
)

(d) If V¥ is the Levi-Civita connection with respect to g then VM is the Levi-Civita
connection with respect to g

Solution. (a): We show that VM is well defined. This is true, because by exercise 5.3,
the extensions X,Y exist, and by exercise 5.4, the result is independent of the choice of
extensions.

We show that VM is a connection. VM is C'°-linear on the first variable:

VMY, = (v;YX?);
~ ~\ T
(F739),
= f(p)(VXY),
= f(P) VXY,
VM satisfies the Leibniz rule on the second variable:
VY], = (VYY)
— (XY + fvgfx);
= X()Yy+ f) (VAT)!
= X(f)Y], + f(p)VXY],.
(b): Notice that [X,Y], = [X,Y], € T,M implies that [X,Y]] = [X,YV], = [X,Y],.

VMY, - VY X|, = (Vﬁ); - (VW);
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N
= [X’Y/]p
(X, Y],
(c):
(VXY. 2))' + (Y, VX Z)," = {(VXY),, 2)," + (V. (VE2),),'
= ((VXY);, 2), + (Y. (VR2),),
- ((ng)p, Z);])V + <Y> (Vg )p>;3v
=X <Y/> Z>1]3V
=X (Y, Z))!

(d): If V¥ is the Levi-Civita connection with respect to g", then V¥ is symmetric
and compatible with ¢", therefore VM is symmetric and compatible with g™, therefore
VM is the Levi-Civita connection with respect to ¢g*. [

Exercise 5.6 (divergence). Let M be an orientable smooth manifold M with volume
form w and with possibly nonempty boundary dM. The divergence of a vector field
X € X is the unique function div X € C*°(M,R) such that

div(X)w = Lxw.

Assume in addition that (M, g) is Riemannian, compact and that w is the Riemannian
volume element. Then M is Riemannian as well, so it has a Riemannian volume element
which we denote by @w. Denote by N the outward unit normal vector field to M (which
is a vector field defined on an open neighbourhood U of OM).

(a) Prove the divergence theorem: for all X € X(M), we have that
div(X)w = / X, N)w.
[ div(x)w = [ g(X. N}

(b) Prove the Leibniz rule for the divergence: for all u € C*°(M,R) and X € X(M),
we have that

div(uX) = udiv(X) + g(Vu, X).

(c) Prove the integration by parts formula: for all u € C*°(M,R) and X € X(M), we
have that

/Mg(VU,X)w =— /MudiV(X)w + /BM ug(X, N)w.

Solution. (a): We proved in exercise 2.5 from exercise sheet 2 that

/M div(X)w = /aM LxWw.
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It remains to show that txw = g(X, N)w. For this, let p € M and Ei,..., E, be an
orthonormal basis of T,M with Fy = N,. Then, Es, ..., E, is an orthonormal basis of
T,(OM). Denote by E*, ..., E" the basis of T*M dual to Ei,..., E,. Then,

(txw)p(Ea, ..., Ey)
=w,(X, By, ..., E,)
=FE'N---ANE"(X,Es,...,E,)

definition of ¢x]

def. Riemannian volume element]

[
[
= EY(X) [definition of A]
= gp(Ey, X) [Ey, ..., E, is orthonormall
— (N, X) By = N]
= gp(N, X)w(Es, ..., E,) [def. Riemannian volume element].
(b): Since
div(uX)w = L,xw [definition of divergence]
= diyxw + tuxdw [Cartan’s magic formula]
= deyxw [w is of top degree]
= d(utxw)
=du A ixw + udixw [Leibniz rule for d]
=du A ixw+ulxw [Cartan’s magic formulal

=du A ixw+ udiv(X)w [definition of divergence],
it suffices to show that du A txw = g(Vu, X)w. This is true because

0=1tx(duAw)
= (txdu)w — du A ixw
=du(X)w —du A Lxw
= g(Vu, X)w — du A txw

[du A w = 0 because w is of top degree]
[Leibniz rule for ¢ x|

[definition of ¢x]

[

definition of gradient].

/M (Vu, X)w :—/Mudlv w+/ div(uX)w  [by (b)]
= —/Mudlv w—i—/aMug X,N)w [by (a)]. O
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6 Exercise sheet No. 6 - 17-12-2020

Exercise 6.1 (Laplacian). Let (M, g) be an orientable connected Riemannian manifold,
possibly with nonempty boundary 0M. Denote by V the Levi-Civita connection on M,
by w the Riemannian volume element of M, and by @ the Riemannian volume element
of OM. For u € C*(M,R), the Laplacian of u is a function Au defined by

Ay = div(Vu).
A function u is harmonic if Au = 0.

(a) Prove Green’s identities: if u,v € C°°(M), then

/M uAvw + /M g(Vu, Vo)w = /é}M ulN (v)w,

/M (uAv — vAU)w = / (uN(v) — vN(u)) w.

oM

(b) Show that if 0M # @ and u and v are harmonic functions such that u|gn = v|oas,
then u = v.

(c) Show that if OM = @ and w is a harmonic function then w is constant.

Solution. (a): We prove the first of Green’s identities:

/ 9(Vu, Vo)w
M
= —/ udiv(Vo)w + / ug(Vv, N)w [integration by parts for div with X = V]
M oM
=— / uAvw + udv(N)w [definition of A, V]
M oM
= —/ uAvw+/ ulN (v)w.
M oM
We prove the second of Green’s identities:
/ (uAv — uAv)w
M
= —/ 9(Vu, Vv)uH—/(9 ulN(v)w [by the first Green identity]
M M
+/ 9(Vu, Vu)w — / vN(u)w
M
= (uN(v) — vN(u))w.
oM

(b): Define z = w —v. Then z|spy = 0 and z is harmonic. We want to show that
z=0.

[ IvzPo= [ g(72, V2
M M

= —/ zAzw + zN(z)w [by Green’s identities]
M oM
= 0. [Az =0, z|on = 0]
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Therefore, Vz = 0, which implies that dz = 0 and that z is constant. Since z|gp = 0
and OM # &, we conclude that z is constant equal to 0.

(c):

2, —
S IVulPo = [ g(Vu, Vuje
= — / uAuw + ulN(u)w [by Green’s identities]
M oM

Therefore, Vu = 0, which implies that du = 0 and that u is constant. [

Exercise 6.2 (Eigenvalues of the Laplacian). Let (M, g) be a closed oriented Riemannian
manifold, with Riemannian volume element w. A real number A is called eigenvalue of
the Laplacian if there exists a u € C*°(M)\{0} such that

Au = d\u.

In this case the function u is called eigenvector (or eigenfunction) of A to the eigen-
value \.

(a) Show that 0 is an eigenvalue of A and all other eigenvalues are strictly negative.

(b) Let A and u be two distinct eigenvalues of A, with corresponding eigenfunctions u
and v. Show that
/ uvw = 0.
M

Solution. (a): We show that 0 is an eigenvalue of A. For this, it suffices to show that
there exists a nonvanishing function u such that Au = 0. v =1 is such a function.

We show that if A is an eigenvalue of A, then A < 0. Since A is an eigenvalue of A,
there exists a nonvanishing function u such that Au = Au. By first of Green’s identities
with v = u,

/M uAuw + /M g(Vu, Vu)w = /aM ulN (u)w
2 _
= )\/Mu w —|—/Mg(Vu,Vu)w =0
~ Ju9(Vu, Vujw

A p—
— fM P

<0.

(b):

(—N) / uvw (uAv — vAu) [Au = Au and Av = ]
M

I
E\

: (uN(v) —ovN(u))w [second Green identity]
M
[OM = 0].

Il
o

Since p — A = 0, we conclude that [, uvw = 0. O]
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Exercise 6.3 (covariant derivative in coordinates). Let M be a manifold, V be a linear
connection on M, w a 1-form on M and X a vector field on M. Show that the coordinate
expression of Vyw is

oxt

where Ffj are the Christoffel-Symbols of V on T'M. Find a coordinate formula for V x F',
where F' € T*M is a tensor field of rank (k).

Owy
Vxw= <XZ - X’wjf‘ik> da®,

RAr"' @ - - @ da*.

SRRy

Solution. Let X = Xiaii’ = wpdz® and F = szll ZJkl 52
Then, V o da* = —I'f da”

ozt
(Vi) (5) = Vs (4 (5)) ~ 4+ (V2. 5)

:L"Jl

We show that Vyw = X7(92% — w;T%, )da*:

Vxw =V Xi 2, (wkdx ) [coordinate expressions for X, w]

= X' V o (wkdx ) [V is C°°-linear in 1st variable]

ozt

=X Z((V 2 wk> dz* + wpV o dx ) [V obeys Leibniz rule in 2nd variable]

EXE

= X' (dex wkl“frdﬂ> [by the computation above]
!
awk j . .
= X' 5 ——da — w;Tda* [change names of the indices]
x?
— Xt (CZC;I; wjffk> dz”.

We compute the local coordinate expression for V x F':

VxF
=V F]l ]l 0 9 d 1 d ik
- X“aia 1. zka j1 K a il Kdr" ®---Qdx
0 0 , ,
:X“Ve)(F?l"'{j — Q- ® — ®da" ®---®dm“€>
9@\ 1t Qi Oxi
= X (V_o FIri i@ ®i®dx“® - @ da'*
Paa Ptk oxit oxJt
a0 0 0 0 0 .
J1---J1 e ; i1 i
+ b F’Zl"'lk axh ® amjb—l ® vﬁ)“ 0,’1}7” ® agjjb-u ®- ax ® dZL’ ®- 0 dﬂf
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0 . . ) ) )
+ ZFZE f,fa - @ @d" @ @dr @V, & @dr @ ® d:ﬂk)

Oxe "t ) Qg ozt

0 0 0 0 0 ,
Ji---Jipe ) — i1 i
+ZF“ Wlangm ® g @y Qe @@ m@dt" @ @da™

X(() o e s

+ ZFz]ll z]kl Zdea Q- ® 88] @di" @ @dr @dr* @dr' N ® - ® dmi’“)
= Xa<<aiaf1{{jj;{j> 8;:911 ®® 88] ®dr" ® - @ da’
+ZF311 P V] aaﬁ @ ® a;“ ® aijb ® axiﬂ R ® ai] ®de @ --- @ da'*
— Z F;,]ll fo veigaoin L aiyg 88]1 Q- ® 88] RIE" Q- ®@dr ' @dr¥ @dr @ - ® da:i’“>
- (i B+ S BT
- ZFff W seiann szZw> aa aa] 1@ @det

[]

Exercise 6.4 (Hessian). Let (M, g) be a Riemannian manifold with Levi-Civita con-
nection V. If uw € C®(M) is a function on M, its Hessian is a (2,0)-tensor given
by

Hess(u) (X, Y) = (V2u)(X,Y),
where V? = VV and both V mean total covariant derivative. Show that
Hess(u)(X,Y) =Y (X (u)) — (VyX)(u).
Solution. We show that Vu = du. For any X € X(M), we have that

(Vu)(X)=Vxu  [definition of total covariant derivative]
= X(u) [definition of covariant derivative of a function]

= du(X) [definition of exterior derivative of a function].
We show that Hess(u)(X,Y) =Y (X (u)) — (VyX)(u):
Hess(u)(X,Y

[definition of Hessian]
) [def. of total covariant derivative]
= Vy((Vu)(X)) = (Vu)(VyX) [def. of covariant derivative of a tensor]
) [Vu = du]
[

def. of covariant derivative of a function]. O
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7 Exercise sheet No. 7 - 07-01-2021

Exercise 7.1. Let (M, g) be a Riemannian manifold with a linear connection V which is
compatible with g. Let v: I — M be a smooth embedded curve and X,Y € C>®(~v*T'M)
be vector fields along . Show that

d
70X Y) = 9,0 (DX, Y) + gy (X, DY)

Solution. Let X,Y | Z € X(M) be extensions of X,Y,4 € C®(y*TM). Then,

def. of der. of function along vector]
V is compatible with ¢]

0 (Vs X, Y) + 9,0 (X, Vi)Y
0(DiX,Y) + g0 (X, DY)

Z is an extension of 4]

Zy
= J(t) (VZX Y) + gy (X, V;Y)
9~
=0y definition of Dy. O

[
[
[
[

Exercise 7.2. Let M C R" be a submanifold of (R™, ggn). Equip M with the induced
metric gy from ggn. Recall that for every p € M and X,Y € X(M) the Levi-Civita
connection coming from g, is given by

V¥Y|p = va]})g(n?ba

where X,Y € R” are vector fields extending X,Y. Let v: I — M be a smooth
embedded curve. The connections VM and V®*" induce corresponding maps of covariant
differentiation along v, which we denote by DM and DX". Show that

DMX = m,uyDy X,
Solution. Let

X(M) be an extension of X € C*(y*T'M),
X(R"™) be an extension of X € X(M),
X(M) be an extension of ¥ € C*°(y*T'M),
X(R") be an extension of Z € X(M).

N N < <

S
€
S
S

Then,

DM X =V¥X ‘V(tl [definition of D]
= Ty1) V%"f( Iy [V of a submanifold]
= m,uDf X [definition of DF"]. O

Exercise 7.3 (Patallel transport is isometry). Let (M, g) be a Riemannian manifold
and V be an affine connection on M. Show that the following are equivalent:

(a) V is compatible with g.
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(b) For every curve v: I — M and for every b,a € I, the parallel transport map
B TyayM — Ty M is an isometry.

Solution. (a) = (b): It suffices to assume that ¢ty € I, v,w € T, )M, and to prove
that
Vit € 1+ gy0) (Pt ¥, Pligw) = Goia) (v, w).

Define a function f: I — R by f(t) = g, (Pp v, P} ;w). We show that f(t) =o:

df d L
E@) = Egv(t)(Ptz,tU; Py qw) [by definition of f]
= gy (De P v, Pyl jw) + gy (P 40, Dy P yw)  [by exercise 7.1]
=0 [definition of parallel transport].

Therefore, f is constant equal to f(to) = gy(o) (v, w).
(b) = (a): It suffices to assume that X,Y,Z € X(M), that p € M, and to prove
that

Xp(g(Y7 Z)) = gp(vXpY7 Zp) + gp(YZ;J’ VXPZ)’

Let v: (—e,e) — M be a curve such that v(0) = pand ¥(t) = X, for every t € (—¢,¢).
Denote Y; = Y, and Z, = Z, ). It suffices to show that for every ¢ € (—¢,¢), we have

d
&g’y(t)(na Zt) = gw(t)(Dth, Zt) + 9yt (Yn DtZt)-

The proof is the following computation:

d
ag'y(t)<}/;7 Zt)

d
= &gp(P&th, Py Z) [Fy; is an isometry]
d d
= 9p<dtP07,th, P(;Y,tZt> + 9 <P(;):t}/;a dtP&tZt> [derivative of product]
d d ) )
= Gy(t) (Pﬁo(ﬂP&tK, Zt) + gy(t) <Y}, PJOdtP&tZt) [Py is an isometry]

= Gyt (DeY%, Zt) + g1y (Y2, DiZy),

where in the last equality we used the formula for the covariant derivative in terms of
parallel transport. O

Exercise 7.4 (surface of revolution). Let I be an open interval, and a,b: I — R
be functions on I such that a is positive and the curve v(t) = (a(t),0,b(t)) in R? is
parametrized by arc-length. Define a surface of revolution M C R3 by revolving the
image of v about the z-axis.

(a) Find a local parametrization of M in a neighbourhood of any point p € M (Hint:
The coordinates of the parametrization are (0,t), where 0 is the angle for which the
image of v is rotated and t is the curve parameter of ).

(b) Compute the Christoffel symbols of the induced metric in the coordinates found in
the first step.
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(c¢) Show that the meridian (6o, Ci7 + Cy) is a geodesic on M.

(d) Determine necessary and sufficient conditions for a latitude circle {t =t} to be a
geodesic.

(e) Let ¢(7) be a geodesic such that ¢(19) = (g, to) and ¢(m9) = (64, ¢1). Show that the
following quantities constant along c:

o The Clairaut invariant: C(7) = a?(¢(7))0(7);
« The energy (which is equal to the square of the arc length): e(r) = (1) +
a?(t(r))6*(7).
Solution. (a): The parametrization is ¢ : [0,27) x [ — M defined by
p(0,t) = (a(t) cos(0), a(t) sin(6), b(t)).
(b): First we compute the induced metric on M. The metric on R? is

gst. = dr @ dr+dy @ dy + dz ® dz.

Let gj; denote the induced metric on M. Then we have gy, = ¢*gs.. For the coordinates
x, y and z we have the following relations

From here it follows that

dx = acos(0)dt — asin(6)db,
dy = asin(0)dt + a cos(0)do,
dz = bdt.

Then

dx ® dx = (acos(f)dt — asin(f)dh) @ (acos(f)dt — asin(6)dh)
= a? cos?(0)dt ® dt — aasin(0) cos(0)dt ® df — aa sin(f) cos()df @ dt
+ a*sin®(60)df @ df,

dy @ dy = (asin(0)dt + acos(0)df) @ (asin(0)dt + a cos(8)do)
= a?sin®(0)dt ® dt + aasin(0) cos(0)dt @ df + aasin(6) cos(0)dd @ dt
+ a® cos?(0)df @ db,

and ‘
dz @ dz = b*dt @ dt.

Hence
IM = P gst.
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=dr@dr+dy®@dy+dz ®dz
= a* cos?(A)dt ® dt — aasin(f) cos(#)dt ® df — aasin(0) cos(0)dd @ dt
+ a*sin®*(6)df @ df
+ a*sin?(0)dt ® dt + aasin(6) cos(0)dt @ df + aasin(f) cos(0)dd @ dt
+ a? cos*(0)df @ df
+ Vdt ® dt
= (a* + 0*)dt @ dt + a*df @ df
= dt @ dt + a*df @ df.

So, we can write gj; as a matrix:
The inverse metric is given by

Then, using the formula

1
FZV = 590’{ (augwi + al/g;m - aﬁg;m)

we compute the Christoffel symbols:

1 1
§gt”(<9tgm + 019ix — OkGu) = igtt(atgtt + Oigu — Orgu) =0

1
th = §gm (0rg10 + Orgto — Opgr) = 0

t
Ftt_

1
I, = §gm (Ovgtx + Orgor — Orgor) =0

[y =0

T = ;geﬁ (Do9tr + Orgos — Oxgor) = ;geeatg% = g
="

Too = ;gm (Oagor + 0096 — Oxgoo) = —;g“@tggg = —aq
er = 0.

(c): Let ¢: J — M be a curve in M and denote by 7 the time parameter of ¢. In the
coordinates given by ¢ the curve ¢ may be written in the form ¢ : J — [0,27) x [ with
c(1) = (0(7),t(7)). The geodesic equation, in these coordinates in the of the form

0 + 0°19, + 20iT%, + {219, = 0,
t+ 0%, 4 20iT%, + 2T, = 0.
By (b) these equations reduce to
0+ 20i2 =0,
a
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f— 0%aa = 0.

For meridians the curve c is of the form ¢(7) = (6p,t(7)). From the geodesic equations,
we see that only the second one survives and we obtain

t=0.

Hence t(1) = Ci7 + Cy where C,Cy € R.
(d): Consider a longitudinal curve, which we parametrize as ¢(7) = (6(7),ty). Then
the geodesic equation from part (3) go over in

6(1) =0, and 6%aa=0.

The first equation implies that 6 is of the form 0(7) = Cy7 + Cs. This inserted in the

second equation implies that
C2aa = 0.

Since it is assumed that a(ty) > 0 then C%a(ty) = 0. Which implies that C; = 0 or
a(tg) = 0. If C7 = 0 then c is just a point. If there exists a to € I such that a(ty) = 0
then (C17 4 Ca,tp) is a longitudinal geodesic.

(e): We prove that the Clairaut invariant is constant along c.

d d ..
EC(T) =3¢ (t(7))0(7)

= 2aatf + a0
= a(af + 20ia)
= 0.

We prove that the energy £2(7) + a2(t(7))6?(7) is constant along c. Differentiating
with respect to 7 yields

d d (2 2 )2
e(r) = 2 (7) + (KT (7)

= 2 + 2aatb? + 2a%00

= 21 + daatbd? — 2aath? + 24200

= 2i(f — aab?) + 2a0(ab + 2at0)

=0. 0

Exercise 7.5. Let (M, g) be a Riemannian manifold and f € C°°(M) be such that
[(Vf) (P)llyp) = 1 for all p € M. Show that the integral curves of V f are geodesics.

Solution. Let v be an integral curve of Vf, i.e. 4(t) = Vf(y(t)). We want to show that
D¢y = 0. For this, it suffices to show that VgV f =0, since Dyy = VgV fly0).
We show that ¢(VxVf,Y)=g(VyVf, X), forall XY € X(M):

0=d*f(X,Y)
= X(df(Y)) = Y(df (X)) — df ([X,Y])
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=g9(VxVY)+ g9V, VxY) —g(VyV [, X) = g(V[, VyX) —g(V[ [X,Y])

We show that g(VxVf,Vf) =0, for all X € X(M):

0=X(1)
= X(9(Vf, V)
=9(VxVf,Vf)+39(Vf,VxV[)
=29(VxVf,Vf).

Then, for all X € X(M):

= 0.

Therefore VgV f = 0. O

Exercise 7.6 (homogeneous Riemannian manifold). Let (M, g) be a Riemannian man-
ifold. Consider the group of isometries of M:

Isom(M, g) = {¢: M — M | ¢ is an isometry}.
This group acts on M via

Isom(M,g) x M — M
(0,p) — ¢(p).

M is homogeneous if this action is transitive (i.e. for all p,q € M there exists a
¢ € Isom(M,g) such that ¢(p) = ¢). Show that if M is homogeneous then M is
geodesically complete.

Solution. It suffices to assume that p € M, v € T,M has unit norm and that v: I — M
is a geodesic with maximal interval of definition I such that 0 € I, v(0) = p and ¥(0) = v,
and to prove that I = R. Assume by contradiction that I = (a,b), with a # —oo0 or
b # +oo0.

We derive a contradiction in the case where b # +o00. There exists r > 0 such
that exp, is defined on B,(0) C T,M. Choose ¢ € (0,7) and define ¢ = v(b — ) and
w = 4(b—¢). Since M is homogeneous, there exists an isometry ¢: M — M such
that ¢(p) = ¢q. Since ¢ is an isometry, exp, is defined on B,(0) C T; M. Define a curve
7: (a,b — e 4+r) — M by the equation

(1) = {w) if ¢ € (a,b)

equ((t—b—l—a)w) ifte(b—c—rb—c+r)

Notice that exp,((t—b+¢)w) is well defined if t € (b—e—r,b—e+7) because exp, is well
defined on B, (0) C T, M and w has unit norm. We need to check that 7 is well defined,
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ie thatift € (a,0)N(b—e—1b—ec+r)=(b—e—r,b) then v(t) = exp,((t —b+<c)w).
This is true, by the following informal computation:

expy((t — b — e)w) = expey, (b-eyn) (= b — €)w)
= start at p, flow in the direction of v for b — ¢ seconds
(so now we are at ¢ with tangent vector w)
then flow again for ¢ — b — € seconds in the direction of w
= start at p, flow in the direction of v for t seconds
= exp,(tv)
=(1).
Then, 7 is a geodesic and it is an extension of v from (a,b) to (a,b — e + r). This
contradicts the fact that I was the maximal interval of definition.

To derive a contradiction in the case where a # —oo, proceed analogously as in the
proof of the case b # +oo. m
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8 Exercise sheet No. 8 - 14-01-2021

Exercise 8.1 (naturality of exponential map). Let ¢ : (M, gp;) — (N, gn) be an isom-
etry Denote by OM C T,M the domain of expy and by (’)ﬁp) C Typ)N the domain of
exply,)- Show that D(b( )( »') = O}, and that the following diagram commutes

M Do(p) N
Op ch

|

M ¢
Solution. We show that D¢l|,(O,") = (9¢(p) To show that D¢|,(O)') C O(]bv(p) it suffices
to assume that v € O} C T,M (ie. that the geodesic 7" starting at p € M with
initial velocity v € T, M exists for ¢ € [0,1]) and to prove that Do|,v € O, (i.e. that
the geodesic 4V starting at ¢(p) with initial velocity Dg|,v exists for ¢ € [0,1]). By
naturality of the Levi-Civita connection, ¢ o v is a geodesic. Since

7V(0) = ¢(p) = ¢ 0™ (0)
S| s =pelw= 2| 6000

and by uniqueness of geodesics with prescribed initial conditions, we conclude that vV =
¢ oM. This proves that v~ (t) is defined for ¢ € [0, 1]. To show that D¢[,(O}") D Ofb\gp),
we apply the previous inclusion but reversing the roles of M and N and considering the
isometry ¢=1: N — M.

We show that the diagram commutes. For this, it suffices to assume that v € (9[],” C
T,M and to prove that qﬁ(expi)\/[(v)) = equs (D¢|pv) Denote by M the geodesic in M
which starts at p € M with initial velocity v and denote by vV the geodesic in N which
starts at ¢(p) € N with initial velocity D¢|,v. By the same argument as in the first part
of this proof, vV = ¢ o ¥M. Then,

dlexpl (v)) = oM (1) [definition of exp™]
= WN(l) VN = ¢ o™
= expd) (D) [definition of exp™]. O

Exercise 8.2 (local isometries). Let (M, gn), (N, gny) be Riemannian manifolds. A
smooth map ¢: M — N is a local isometry if for every p € M there exists U a
neighbourhood of p in M and V' a neighbourhood of ¢(p) in N such that ¢(U) = V
and ¢: U — V is an isometry. Assume that M is connected and that ¢,v: M —
N are local isometries such that there exists p € M with ¢(p) = ¥(p) and D¢|, =
Dy|,: T,M — T4y N. Show that ¢ = .

Solution. Define

S={pe M]|¢(p)=¢(p) and Dé(p) = Dy(p)}.

We want to show that S = M. S is closed and by assumption there exists p € S. Then,
since M is connected it suffices to show that S is open. For this, it suffices to assume that
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p € S C M and to prove that there exists a V' C M open such that p e V. C S C M.
Let ¢ = ¢(p) = ¥(p) and T = D¢(p) = D¢(q). Choose U, Uy, Uy, V, Vy, Vi, open such
that in the following diagram every arrow is well defined (i.e. maps its domain to its
target) and a bijection and the following diagram commutes:

Ty N M TowN
U U U
U, Dy(p) U Dg(p) U,
oxpyy <p>l Jexpgd Je"p%) '
Vi " V p Ve
N N N
N M N

This can be achieved by using the fact that ¢, ¥ are local isometries, by exercise 8.1,
and by rescaling the open sets appropriately. By construction, p € V. We show that
V C S. For every u € U,

w(expy (u)) = expy, (DY (p)u)

= expév (T'w)

= expg,) (Do (p)u)

= ¢(exp,’ (u)).
Since expé” : U — V is a bijection, we conclude that ¢ = 1) on the open set V. This
implies that D¢(p) = Dy(p) for every p € V. O

Exercise 8.3 (complete submanifold).

(a) Let N be a complete Riemannian manifold and M be an embedded submanifold
of N such that M is a closed subset of N. Show that M is complete.

(b) Give an example of a complete Riemannian manifold N and a closed immersed
submanifold M of N such that M is not complete.

Solution. (a): It suffices to assume that (x,), C M is a sequence in M which is Cauchy
with respect to d™ and to prove that (z,), converges to x € M with respect to d™.
Notice that d™ (x,y) > d™(x,y), because there are more curves in N than in M joining
x and y. Also, since M is an embedded submanifold, the topology of M is equal to the
subspace topology.

(2n)n C M is Cauchy with respect to d™
— (zn)n C M is Cauchy with respect to d” [dM (z,y) > dV(x,y)]
— (2,,)n C N converges to x € N with respect to d™ [N is complete]
— (zn)n C M converges to z € M with respect to d™ [M is closed, embedded].
(b): Consider N = R?* and M = (0, +0o0), with immersion ¢: M — N represented
in figure 8.1:

Then, N is complete, «(M) C N is closed, and ¢ is an immersion, but M is not
complete. 0
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N fp\t m 1

A 4

Exercise 8.4 (adjoint representations). Let G be a Lie group.

(a) Define C: G — Diff(G), g — C,, via Cy(h) = ghg™'. Show that C is a Lie
group action (the group action by conjugation), i.e. that Cy, = C,C,.

(b) Define Ad: G — GL(g), g — Ad,, via Ady(X) = DC,(e)X. Show that Ad is
a Lie group representation (the adjoint representation of G), i.e. that Ad,, =
Ad, Ady,.

(c) Define ad: g — gl(g), X —— adx, by adx(Y) = [X,Y]. Show that ad is a
Lie algebra representation (the adjoint representation of g), i.e. that ad;xy) =
[adx,ady].

(d) Show that adx = D Ad(e)X.

(e) Let (-,-) be an inner product on g and g be the unique left-invariant Riemannian
metric on G such that g. = (-,-). Show that ¢ is right invariant if and only if (-, )
is Ad-invariant.

(f) Show that if (-,-) is Ad-invariant then ady is anti-symmetric with respect to (-, -),
ie. (ady Y, Z) + (Y, ady Z) = 0.

Solution. (a):
Cyn(l) = ghl(gh)™  [definition of O]

= gCu(D)g~  [definition of C]
= C,Cr(1) [definition of C/.

Adg, = DCyy(e) [definition of Ad]
=DC,(e)DCy(e) [chain rule]
= Ad, Ad,, [definition of Ad].
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ad[X,y} Z = HX, Y],Z]
—[lY. Z], X] - [[Z, X]. Y]
= [X. [V, Z]] - [V, [X, Z]]
= adx([Y, Z]) — ady (X, Z])
=adyady(Z) —ady adx(2)
= ladx,ady](Z)

[definition of ad]

[Jacobi identity]

[[-,] is anti-symmetric]
[definition of ad]
[definition of ad]
[definition of [-,-] on gl(g)].

(d): It suffices to assume that V,W € g and to prove that (D Ad(e)V)W = ady W.
Denote by XV, X" the left invariant vector fields in G that equal V, W at the identity.

:ade

(D Ad(e)V)W
d
T Adexpvy W [definition of derivative]
t=0
j DCexpevy (€)W [definition of Ad]
t=0
d d
—| |  Cepuv)(exp(sW)) [definition of derivative]
dt lt=odsls=0
d d
— =] exp(tV)exp(sW)exp(—tV) [definition of C|
d t=0 ds s=0
d d
=—| —| ovie) diwle)  oyh(e) [definition of exp]
dt li=odsls=o
d d
—| = dv(e) o (5w (e)) [ XV is left invariant]
dt li=ods |s=o
dp 4 qb;(t}/(e)(gbtxv(e) - pw (e)) [ XV is left invariant]
dt t=0 dS s=0
d d
— ¢ (5w (v (€))) [XW is left invariant]
d t=0 dS s=
d d _ .
T —ods s:O¢XV o ¢xw (D (e))
= jt ((qb)_(tv)*X "o [definition of push forward]
t=0
=Ly X%, [definition of Lie derivative]
=[xV, X")¢ [LxY = [X,Y]]
=[V,W]* [definition of [-,-]9]
[

definition of ad].
(e): We show that ¢ is right-invariant if and only if g. = (-,-) is Ad-invariant:

g is right-invariant
<= VheG: Ryg=g
<= Vh,l € G: Vu,v € T)G:
gin(DRu(1) -, DRy(1) - v) = gi(u, v)
<= Vh,l € G: Vu,v € T)G:
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9e(D Ly (IR)DRy (1) - u, DLapy-+ (1R)DRy (1) - v)
= ge(DLi-+(1) - u, DL (1) - v)
< Vh,l € G: Yu,v € T,G:
ge(DLy-1(h)DRy(e)DLy-1(1) - 1, DLy (h)D Ry (1D Ly (1) - v)
= 9:(DLi (1) - u, DL (1) - )
<= VheG: Vu,velG:
e (DLh(h_l)DRhﬂ(e) ~u, DLy(h"" DRy, -1 (e) -v) = ge (u, v)
<= Vh e G: Yu,v € T,G: g.(Ady u, Adyv) = ge(u,v)
<= ¢, is right invariant.

(f): For all t € R, (Y, Z) = (Adexp(ex) Yy Adexpex) Z). Differentiating this expression,
d

0= — Y. Z
dt t:0< ’ >
d
d d
= <dt o Adexp(tX) }/7 Adexp(tX) Z> _I_ <Adexp(tX) }/7 & —0 Adexp(tX) Z>
— (adx Y, Z) + (Y, ady Z). -
( : :

Exercise 8.5 (bi-invariant metric). Let G be a compact Lie group. Let (-, -) be an inner
product on g = T.G and dh be a Right invariant measure on G. Define g to be the
unique left-invariant Riemannian metric on G which at the identity is given by

ge<u; U) = / <Adh Uu, Adh U)dh,
G

for all u,v € g =T.G. Show that g is right-invariant.

Solution. We show that g, is Ad-invariant. For this, it suffices to assume that | € G,
u,v € g and to prove that g.(Ad; u, Ad;v) = ge(u,v).

ge(Ad; u, Ad; v)
- / (Ady Ad;u, Ady, Ad; 0)dh  [definition of g]
G

= /G (Adp; u, Ady v)dh [Ad is a representation]

= /G<Adhl w, Ady; v)d(hl) [dh is right invariant]

= / (Ady, u, Ady, v)d(h) [change of variables]

= geG(u, v) [definition of g.]. [

Exercise 8.6 (Riemannian and Lie group exponential). Let G be a Lie group, with
a bi-invariant Riemannian metric g. Denote by expp,,: TG — G the Riemannian
exponential map and denote by exp;: T.G — G the Lie group exponential map.

(a) Show that for all X,Y € X(G) left invariant vector fields on G we have that
ViY = L[X,Y].
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(b) Conclude that if X is a left invariant vector field, then the flow lines of X are
geodesics and that expp,, = exp;q.

Solution. (a): It suffices to assume that XY, Z are left invariant vector fields and to
prove that 2(VxY, Z) = ([X,Y], Z).

2(VxY, Z)
X-YZ)+Y - (X,Z) - Z - (X)Y)
—([X,Z],Y) = (Y, Z],X) + ([X,Y],Z) [Koszul formula]
= — (X, Z],Y) —([Y,Z], X) + (X, Y],Z) [(X,Y),(X,Z),(Y,Z) are constant]
=(X,Y],Z)+([Z,X],Y)+ (X, [Z,Y]) [reorder terms|
[

by exercise 8.4].

(X, Y], Z)

(b): If X is a left invariant vector field, then it’s flow lines are geodesics because
VxX =1/2[X, X] = 0. To show that expy,; = exp;, it suffices to assume that X is a
left invariant vector field in G and to prove that expg,,(X.) = expo(X.). By definition
of exppass €xpra(Xe) = (1) where v is the unique geodesic such that v(0) = e and
4(0) = X.. By definition of exp; g, exp;o(Xc) = ¢ (e), where ¢% is the time-t flow of
X. Since flow lines of X are geodesics, ¢k () = v(1). O
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9 Exercise sheet No. 9 - 21-01-2021

Exercise 9.1 (curvature of Lie group, from |

]). Let G be a Lie group with a

bi-invariant metric g. Show that if X, Y, Z are left invariant vector fields on GG, then

by (1)]
by (1)]

[[-, ] is antisymmetric]

[by definition of curvature]

R(X,Y)Z = i[z, X, Y],
Solution. Recall that if X, Y are left invariant vector fields then
VyY = ;[X, Y],
Then,
R(X,Y)Z = VxVyZ — VyVxZ — Vixy 2
_ ;VX[Y, 7] - ;vy[x, 7]~ Vier 2
= X [Y.Z) - Y. (X, 2]) - (XY, 2]
= X[V, Z) + 4V, (2, X]) + 52,1, V]
1
Lz

Exercise 9.2 (rescaling the metric, from |

[Jacobi identity]. O

]). Let M be a manifold, p > 0 be a real

number, and g;, g2 be Riemannian metrics on M such that ¢g; = pgs. Show that

a) VLY = V2V

(
(b) Ri(X,Y)Z = Ry(X,Y)Z and Ry(X,Y, Z, W) = pRo(X,Y, Z,W);

(
(d
(e S —,0

Solution. (a):

Ric; = Rico;

VLY, Z)y = X{Y, 20 + Y (X, Z)1 — Z(X, Yy
_<[X7 Z]7Y>1 - <[Y7 Z]7X>1 - <[X7 Y]72>1
= pX (Y, Z)g + pY (X, Z)s — pZ(X,Y )y
—p<[X, Z]>Y>2 —p([Y, Z]’X>2
=2p(VXY, Z)»
= 2<V§(Y, Zh

(b):

- p([X, Y]’Z>2

)
)
¢) k(X,Y) =plre(X,Y), for X,Y € T,M linearly independent;
)
)

[Koszul formula for V']

91 = pg2]

[Koszul formula for V2]

[91 = pgol.

R(X,Y)Z =V\VyZ -V VY Z — V%X’Y]Z [definition of R; as a (3, 1)-tensor]

=VAVYZ = ViVXZ = VixyZ by (a)]
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= Ry(X,Y)Z

[definition of Ry as a (3, 1)-tensor].

and
Ri(X,Y, Z, W) =(R(X,Y)Z, W), [definition of Ry as a (4, 0)-tensor]
= (Ro(X,Y)Z, W) [by the computation above]
= p<R2(X> Y>Z> W>2 [gl = pg2]
= pRo(X,Y, Z, W) [definition of Ry as a (4, 0)-tensor].
(¢):
Ri(X,Y,Y, X) .
r(X,Y) = [definition of ]
IXIRIYNE = 1X, YL '
pR2 (X7 }/7 Y7 X)
= by (b
AIXEVTE - iy, )
1
= —ro(X,Y) [by definition of ks).
p

(d): It suffices to assume that p € M, X, Y € T,M, and to prove that (Ric;),(X,Y) =

(Rica), (X,
R (X, )Z Then, T7 = Ty:
Ti(Z) = Ru(X,Y)Z
— Ry(X,Y)Z
=T5(2)

Therefore,

(RiC1>p(X, Y) =tr T1
=tr TQ

= (Ricy),(X,Y)

(e): It suffices to assume that p € M and to prove that Si(p) = Sa(p).
Ey, ..., E, a gi-orthonormal basis of T,,M. Then, \/pE1,...

basis of T}, M:

(VPEi, /PEj)2 =

Therefore,

Z 1(31 E,L,E)

RlCQ(Ei, Ez)

I
M: I

s
Il
—

Rico(\/pE;i, /PE;)

>
I
I\

Mi

DI
R
=

SE

Y). For i = 1,2, define a linear map T;: T,M — T,M via T;(Z) =

[by definition of 7]

by (b)]
[by definition of T5].

[by definition of Ric,]
[by the above computation]
[by definition of Ricy].

Choose
,/PEn 18 a gy-orthonormal

(VPE:i, \/PEN

Ei> Ej>1
i
[by definition of S]

by (d)]
[Ricy is a tensor, hence bilinear]

[by definition of Ss]. O



Exercise 9.3 (from | ]). Let (M, g) be a 3-dimensional Riemannian manifold. Show
that the curvature tensor is determined by the Ricci curvature tensor. More precisely,
assume that R, R’ are covariant 4-tensors satisfying the same identities as the curvature
tensor and let Ric, Ric’ be given by Ric;; = Ryijk, Ricj; = Ry, Show that if Ric = Ric’
then R = R.

Solution. Consider the identities satisfied by the curvature tensor, as well as the identity
saying that the trace is 0O:

Rijr = —Rjin (2a)
Rijki = B (2b)
Rijrr + Rjrit + Riijo = 0 (2¢)
Ry = 0. (2d)

Define vector spaces

V ={R | R is a covariant 4-tensor satisfying (2a), (2b), (2¢)}

W ={S| S is a symmetric covariant 2-tensor}

and a linear map ¢: V. — W given by (¢(R));; = Ryijr. With this language, what we
wish to show is that ¢ is injective. Define

U =ker¢
= {R | R is a covariant 4-tensor satisfying (2a), (2b), (2c), (2d)}.

We will compute the dimension of U as a function of the dimension of M, and we will
see that if dim M = 3 then dim U = 0. Denote n = dim M and

X :={R | R is a covariant 4-tensor satisfying (2a), (2b)},
N3 := number of equations in (2c) independent from (2a), (2b),

N, = number of equations in (2d) independent from (2a), (2b).
Then

We compute dim X. For this, let R be an element of X and write R as an n? x n?
matrix

Rllll R1112 T Rllnn
R1211 R1212 e R12nn
Rnnll Rnn12 e Rnnnn

(2b) says that this matrix is symmetric and (2a) says that in this matrix, each row and
column assembles into an n x n antisymmetric matrix. The number of independent
components of an n X n antisymmetric matrix is

n(n —1)
—

m =
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So, dim X is equal to the number of independent components of an m X m symmetric
matrix, that is

2 2 2 2

We compute Nj. For each tuple of 4 indices i, j, k,l € {1,...,n}, (2¢) gives us an
equation. However, some of these equations will be linearly dependent.

dim X — m(m+1) 1n(n—1)<n(n—1) +1>'

o If the first 3 indices are permuted evenly, we get the same equation. For example:
ijkl: 0= Rijm + Rjki + Riiji
Jkil: 0= Rjpiy + Riiji + Riju

o If the fist 3 indices are permuted oddly, we get the same equation. For example:

tjkl: 0= Riju + Rjki + Riiji
Jikl: 0= Rjii + Rigji + Rija
= —Rijii — Briji — Rjra

o If we permute the last and second last indices, we get the same equation:

ijkl: 0= Rijm + Rjka + Riiji

iglk: 0= Ry + Rk + Ruj
= —Riju + Rixji + Ry
= —Riju — Rriji — Rjrar

Therefore, we get a different equation for each unordered set of indices {1, j, k, [}, and

N, = (4) 1fn23.
0 ifn<3
We compute Ny. For each tuple of indices i,7 € {1,...,n}, we get an equation
Ryij = 0. But, the equations for ¢j and those for ji are the same:

Ryijk = Rjkki = —Rijri = Rijik-
Therefore,

n(n+1).

Ny = 5

Then, if n > 3

_ ;n(nz— 1) (n(n2— 1) N 1) B (Z) _n(n+1)

2

1
= En(n +1)(n+2)(n—3)
and dimU =0 if n = 3.
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Exercise 9.4 (totally geodesic submanifolds of model spaces).

(a) Let M C (S™, ggn) be an embedded submanifold of dimension m. Show that M
is a connected complete totally geodesic submanifold if and only if there exists
¢ € Isom(S™, gsn) such that (M) = S™ = {(x!,...,2"") € §" | 2™2 = ... =
anrl — 0}

(b) Let M C (H", gg») be an embedded submanifold of dimension m. Show that M is
a connected complete totally geodesic submanifold if and only if there exists ¢ €
Isom(H", ggn) such that (M) = H™ := {(z!,...,2") e H" | 2™ = .- - = 2" ! = 0}.

Solution. (a): We show that S™ C S™ is totally geodesic. To see this, it suffices to
assume that v: I — S™ is a geodesic in S™ and to prove that to~y: I — S™ is a
geodesic in S™.

v is a geodesic on S™
= Vtel: () LS™
<=Vt € I: 4(t) is proportional to ()
= vVtel: (toy)"(t) LS"
<= 107 is a geodesic on S™.
Implication (<=) now follows because M is isometric to the connected, complete,
totally geodesic submanifold S™.

We prove the implication (=>). Choose p € M and = € S™. Recall that the group
of isometries of (S, gsn) acts transitively (proven in the lecture notes) on the set

Sgp=A{p, E1,...,E,) | p€ Sk, E1, ..., E, is an orthonormal basis of 7,53}

Then, there exists ¢ € Isom(S™, gsn) such that ¢(p) = x and De(p)T,M = T,.S™. So,
@(M) and S™ are connected, complete, totally geodesic submanifolds and T,o(M) =
T,S™. This implies that ¢(M) = S™.

(b): We show that H™ C H" is totally geodesic. To see this, it suffices to assume
that v: I — H™ is a geodesic in H™ and to prove that co~y: [ — H" is a geodesic in
H".

v is a geodesic on H™
<= v = is a vertical half-line or a semicircle w. centre on {z™ = 0}
—> 10 = is a vertical half-line or a semicircle w. centre on {z" = 0}
<= 10 is a geodesic on HY.

The remainder of the solution is analogous. Implication (<=) now follows because
M is isometric to the connected, complete, totally geodesic submanifold H™.

We prove the implication (=>). Choose p € M and = € H™. Recall that the group
of isometries of (H}, g ) acts transitively (proven in the lecture notes) on the set

%=1, E1,....,E,) | p€ HE, E1, ..., E, is an orthonormal basis of T,H}}.

Then, there exists ¢ € Isom(H", gg») such that ¢(p) = = and De(p)T,M = T,H™. So,
©(M) and H™ are connected, complete, totally geodesic submanifolds and T,p(M) =
T, H™. This implies that ¢(M) = H™. O
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10 Exercise sheet No. 10 - 28-01-2021

Exercise 10.1 (sectional curvature of model spaces).
(a) Show that (R", ggn) has constant sectional curvature x*" = 0.

(b) Show that (Sg, gsn) has constant sectional curvature k%1 = 1/R?, using the fol-
lowing facts:

o The group of isometries of (S%, gsn) acts transitively (proven in the lecture
notes) on the set

Sp={(p,Er,...,E,) | p€ Sk, Er,..., E, is an orthonormal basis of 7,,5%}.

e The maps ¢: R* — R 1: S2 — S% given by «(z,y,2) = (2,9,0,...,0,2)
are isometric embeddings and S% — S% is totally geodesic.

e The metric and nonzero Christoffel symbols of S% are given in spherical co-
ordinates by

g = R*(df ® df + sin? fdy @ dy)

0 .
I, = —sinfcost
cosf
ry =1%, = ——.
be #0 sing
(c) Show that (H", gy») has constant sectional curvature " = —1/R?, using the same
reasoning as above. The metric and nonzero Christoffel symbols of (H", gy») are

given by:

R2
9= —(dz®dr+dy ®dy)

! 1
e, =T,=-T, =1, =—.
Yy
Solution. (a):
It =0 [Levi-Civita connection of R"]
= R [formula for R,y in local coordinates]

= k=0 [definition of &].

(b): Denote by N the north pole of S% and S% and define ¢ = imD¢(N). Since
Isom (S}, gsn) acts transitively on Sp, (Si, gsn) has constant curvature %% = mi’%(a).
Since S% — Sp is totally geodesic, the second fundamental form of S3 — S is
zero. Therefore, the Levi-Civita connection of S% is the restriction of that of S%, and
analogously for the curvature tensors and the scalar curvature. So, we can compute x°7
as follows:

n

K5F = k3 (o)

SQ
=Ry (TNS}%)
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R9<P<P9

IR EIREAR
1
= « o B o B o
= Wgae (89PW — 0,05, + T, g5 — Ty, @5)
L 0 0 0 0 0
- WQ% (89F<P<p — 0pLg, + T lop — F&FW)
1 of 0 . . cos
- mR (89(_ sin @ cos6) + SlHQCOSQSine)
1
= R2anld (— cos0 + sin 0 + cos” 0)
sin
1
p— ﬁ'
(c): Recall that
HY ={(z1,...,2,) € R" | , > 0}
and (g, )ij = %@j.
The map ¢: H%; — H% given by «(z,y) = (x,0,...,0,y) is an isometric embedding.

Let N denote the north pole for H? and H", ¢ = imD¢(N) and H, = im¢. Since
Isom(H7, gur,) acts transitively (proven in the lecture notes) on

»={(, E1,....,E,) | pe H, E\, ..., E, is an orthonormal basis of T,H},},

(H%, grn ) has constant curvature x™h = /’i%% (o).

Since H% — HY, is totally geodesic, the second fundamental form of H% — Hp, is
zero. Therefore, the Levi-Civita connection of HY is the restriction of that of H7, and
analogously for the curvature tensors and the scalar curvature. So, we can compute k"=

as follows:

Rl = k(o)
H% )

= Ry (TNHR)

— Rzyyz
102112110, 1|2

_ 0,1 — 9,1 +12 12, —18 12

- 2 29‘“( Thyy VY ary—l— yy-zB T ay yﬁ)
10:112110,

1 X X xT X X

-G (azryy — o, + TV T2 — rxyrym)
102112110,

“Frr () (- ()6
EE vy \oy\ y y/\ y v\ y
v o1

-5

1

Exercise 10.2. Let (M, g) be a 2-dimensional Riemannian manifold. Show that for
every p € M we have that S(p) = 2k,,.
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Solution. Let p € M and {E}, E5} be an orthonormal basis of 7M. Then,

S(p) = Ric(E, Ev) + Ric(Esy, Ey) [by definition of S]
= R(FE1, Ey, By, Ey) + R(Ey, By, Ey, Es) [by definition of Ric]
+ R(E\, Es, Es, Ey) + R(Es, Ey, Ey, E»)
= R(Ey, By, By, Es) + R(Ey, Ey, By, E) [identities of R|
= 2R(E, Es, By, Ey) [identities of R]
R(Ey, Es, s, Ey)

B2 E2l” = (Ex, Er)?

= 2k(p) [by definition of &]. O

[{E,, Ey} is orthonormall

Exercise 10.3. Let (/V,h) be a Riemannian manifold and f: N — R be a smooth
function such that 0 is a regular value of f, i.e. Vf(p) # 0 for any p € f~1(0). Since 0
is a regular value of f, M = f~1(0) is a smooth hypersurface of N. Show that:

(a) The vector field n = HV f|| is a unit normal vector field defined in a neighbourhood
of M and L(X) = L(n,X) = v—f(VXVf) :

(b) b,(X,Y) = (VxVY) = Hess(f)(X,Y).

|Vf||
(c) If X,Y are orthonormal, then

IIVfH

M _ N o Hess(f)(X,X) Hess(f)(X,Y)
(XY) = w3 (XY + g @ t(Hess(f)(X,Y) Hess(f)(Y,Y))’

Solution. (a): The vector n = % is well defined in a neighbourhood of M because
Vf(p) # 0 for every p € M. Also, n has unit norm. We show that V f is normal to M.
For this, it suffices to assume that X € X(M) and to prove that (Vf, X) = 0:

(Vf,X)=df(X) [by definition of gradient]
= X(f) [by definition of exterior derivative]
~0 (M = f~1(0) and X € X(M)].

We prove the formula for L:
L(n,X) = (Vxn)" [by definition of L(n, X)]

(V <HV f||>> [by definition of n]
( <||Vf||)vf+ va”VXVf>T [Leibniz rule]
X

1
(o)™ + o TV

||V1f||(Vva) [V f is normal to M].

(b): We prove the first formula for b,,:

b,(X,Y)=—(L(n,X),Y) [definitions of L,, and b,,]
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1
= ||V1f\| (VxVHLY) [y ().
— il (VxV [, Y) [Y is tangent to M].

We prove the formula for the Hessian:

Hess(f)(X,Y) = (Vdf)(X,Y) by definition of Hessian]

[
= (Vxdf)(Y) [definition of total covariant derivative]
= Vx(df(Y)) —df(VxY) [covariant derivative of a form)]
= Vx(VLY)—(Vf,VxY) [by definition of gradient]
= (VxV/[,Y) [V is compatible with h].

(c):

M(X,Y) - kY (XY)
_(B(X,X), B(Y,Y)) — ||B(X,Y)|”
[ XP[Y]]? = (X, Y)?

[proven in the lecture notes]

= (B(X,X),B(Y,Y)) — |B(X,Y)|? [X,Y are orthonormall
= (b(X, X)n,b(Y,Y)n) — ||6(X,Y)n|? [(T,M)* is 1-dimensional]
= b(X,X)b(Y,Y) — b(X,Y)?

b(X,Y) b(Y,Y) [by definition of determinant]

_ 1 Hess(f)(X, X) Hess(f)(X,Y)
N det <Hess(f)(X, Y) Hess(f)(Y, Y)) [by (b)]-

 det (b(X, X) b(X, Y)>
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11 Exercise sheet No. 11 - 04-02-2021

Exercise 11.1 (Local Uniqueness of Constant Curvature Metrics). Let (M, g) and (N, h)
be Riemannian manifolds with constant sectional curvature C'. Show that M and N are
locally isometric, i.e. that for any p € M, ¢ € N, there exist neighbourhoods U of p in
M and V of ¢ in N and an isometry f: U — V.

Solution. Choose (U, ), (V,1) normal coordinate charts around p and ¢ respectively,
such that O = ¢(U) = (V) C R™ (this condition can be arranged by resizing the sets
U and V). Consider the following commutative diagram:

(M,g) «— (U,g) —*— (0.(¢7)7g) —— R"
fi=v~"loidp o% lido

By the proposition describing the metric (of a manifold with constant sectional curvature)
with respect to normal coordinates, idp: (O, (¢7')*g) — (O, (v "')*h) is an isometry
and f: ¢ toidpog: (U,g) — (V,h) is an isometry. O

Exercise 11.2. Let (M, g) be a Riemannian manifold, p € M and ~ : [0,a] — M be a
geodesic with v(0) = p and §(0) =V € T,M. Let W € T,,M be a unit norm vector and
let J be the Jacobi field along v with J(0) = 0 and (D,J) (0) = W. Show that:

(a) HJ(t)Hi(t) can be approximated near t = 0 by

4

t

(b) If y is parametrized by arc-length, V, W are orthogonal, and o = span{V, W}, then
we can approximate |[|J (t)||,2y(t) by

4

t
IO =1~ 5
3

[Tl ) =t = o) + O(E).

K“P(O-) + O(t5)7

Solution. (a): We recall that if £ € T,M, v(t) = exp,(t{) and Y, Z are Jacobi fields
along v such that Y (0) =0, (D;Y)(0) =n and Z(0) =0, (D;Z)(0) = ¢, then

t4
Applying this expression with { =V, n==W and Y = Z = J we conclude that

t4
T3 = NI — RV V)V, W), + O(t”)

=1 — i(R(W, VIV, W), + O(t").
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(b): We compute the sectional curvature at p with respect to o = span{V, W}:

RW,V,V,W i
kp(o) = ||W||2<||V||2 — (W)V>2 [by definition of ()]
=R(W,V,V,W) [ {V,W} is an orthonormal basis of o]
— (R(W, V)V, W) by definition of R(-, -, )].
Therefore, by (a),
t4
715 = = SRV, V)V, W), + O(F)
4
=t - t?)/ip(a) + O(t%).

Let now f(t) =1t — %/fp(a) + O(t"). Then,

3

70 = (1= Emlo) +0(E))
=1 - t;/ﬁp(a) + O(t*)
= LA
Therefore ||J(t)||l,¢) = f(t) =t — Ex,(0) + O(tY). O

Exercise 11.3 (Radial Gauss Lemma). Let (M, g) be a Riemannian manifold, p € M,
W,V € T,M, and ~(t) = exp,(tV). Show that

(Dexp, (V) (W), Dexp,((V)V) = (W, V)

V(1) 2
Solution. There exists a unique A € R and U € T, M orthogonal to V' such that W =

U+ M\V. Let X, Y, Z be the Jacobi vector fields along ~ with initial conditions

X(0)=0, (DX)(0)=0,
Y(0) =0, (D,Y)(0)=\V,
Z(0)=0, (D,Z)(0)=W.

Notice that Z = X + Y. By the formula for the derivative of the exponential map,
Dexp,(tV)W = Z(t),

1
Dexp, (tV)V = XY(t).

Dexp,(tV)V can also be computed as

d
D VYW = —
exp, (tV) P

exp,(tV +sV)  [by definition of derivative]
s=0

=—| F(t+s) [by definition of ~]
dsls=o

— ().
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Then,

(Dexp, (tV) (W), D exp, (tV)V)

—
N
—~
~
SN—
~
—~
~
SN—
~—
)
=
o~
)

7(t) B

(X ()

_l_
».<

(), Y (£)))

(Y (8), Y ()
= A2

P D e

Therefore,

<D exp,,(tV)(W),D expp(tV)V>

V(1)
= )\Hf'y(t)Hi(t) [by the computation above]
= A2 [y is a geodesid
= <D exp,,(0)(W),D expp(O)V> 0 [by the computation above]
0
= (W V)0 [D exp,(0) = id]. O

Exercise 11.4 (boundary problems for Jacobi fields). Let (M,g) be a Riemannian
manifold and v: [0,1] — M be a geodesic. Show that the two-point boundary problem
for Jacobi fields admits a unique solution for every pair of vectors X € T M and
Y € T,1yM if and only if 4(0) and (1) are not conjugate along ~.

Solution. Define p = v(0), ¢ = (1) and V = 4(0), so that (t) = exp,(tV). Define the
notions of one point boundary problem and two point boundary problem: a vector field
J along v is a solution of

« the one point boundary problem with conditions X € T',yM and Z € Ty (T o) M)
if J is Jacobi, J(0) = X and (D;J)(0) = Z;

o the two point boundary problem with conditions X € T, )M and Y € T, q)M if
J is Jacobi, J(0) = X and J(1) =Y.

Recall that the one point boundary problem admits a unique solution for every X, Z.
Also recall that

p and ¢ are not conjugate along
<= exp, is a local diffeomorphism in a neighbourhood of V
<= Dexp,(V): Tv(T,M) — T,M is a linear isomorphism.

The idea of the proof will be to use the fact that Dexp,(V') is a linear isomorphism to
translate between the conditions (D;J)(0) = Z € Ty (T,M) and J(0) =Y. This works
because of the formula for the derivative of the exponential map.

We show that if Dexp,(V) is a linear isomorphism then the two point boundary
problem admits a unique solution for every X € T,M, Y € T, M. We prove existence,
i.e. that there exists a Jacobi vector field J along v such that J(0) = X and J(1) =Y.
Define Z € Ty (T,M) to be such that Dexp,(V)Z =Y. Define J to be the solution
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of the one point boundary problem with conditions X € TyoM and Z € Ty (T, M).
Then, J(1) =Y and J is as desired:

J(1) = Dexp, (V) - (D;J)(0) [formula for derivative of exponentiall
=Dexp,(V)-Z [(D:J)(0) = Z by definition of J]
=Y [by definition of Z].

We prove uniqueness. It suffices to assume that .J, J' are solutions of the two point
boundary problem with conditions X, Y and to prove that J = J’. By uniqueness of
solution of the one point boundary problem, it suffices to show that (D.J)(0) = (D;J’)(0).
This is true because Dexp,(V) is a linear isomorphism and by the formula for the
derivative of the exponential:

(D1)(0) = (Dexp, (V)Y
= (D.J")(0).
We show that if the two point boundary problem admits a unique solution for every
X eT,M,Y € T,M then Dexp,(V) is a linear isomorphism. It suffices to assume that

Z € kerDexp, (V) C Ty (T,M) and to prove that Z = 0. Define J to be the unique
solution of the two point boundary problem with J(0) = 0 and (D,J)(0) = Z. Then,

0=Dexp,(V)Z [by assumption]
= J(1) [by the formula for the derivative of the exponential].
Therefore J is a solution of the one point boundary problem with J(0) = 0 and J(1) = 0.

So, by uniqueness of solution of the one point boundary problem, J = 0. Therefore
Z = (DyJ)(0) =0. O

Exercise 11.5 (energy, from | ]). Let (M,g) be a Riemannian manifold. Define
the energy functional

E: C>([0,1],M) — R
1.
v 5 [ o)
0
Let v: [0,1] — M be a curve and let I': (—¢,¢) x [0,1] — M be a variation of v, ie

= Let V € C®(~y*T M) be given by V(t) = 25(0,¢). Define T = 2L, § =
(0, 2) = ~(t). gl g s o
and v,(t) == T'(s,t). Prove:

(a) The first variation of energy formula:

d

1
| B0 = (il - [ (VD)

s=0

(b) That v is a geodesic if and only if %L:OE (vs) = 0 for every proper variation I' of
s

(c) The second variation of energy formula: if 7 is a geodesic, then

d2

ds?

8w = (Do )|+ [ (IRVAV, 40 + IDVIP)ar.

s=0
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Solution. (a):

d

S B0 = 5o [ Gariedde
dS IYS _QdS 0 78’75

=;/”i%nwﬂ
=5k il )

oS,

/

or or
@%a z%>“

d jor 8F>_<0F
dt \ds’ Ot 0
8F o\ |t= 1790

Sl LG

ds’ Ot

At s =0, 25(0,1) =

d
ds

s=0

ar
D/ >>dt
Dtar>dt

V(t) and 2°(0,¢) =

E(’Vs) -

[definition of Energy]
[differentiation under integral sign]
[definition of ~]

[V is compatible with g]

[symmetry lemmal]

[V is compatible with ¢]

T [fundamental theorem of calculus].

4(t). Therefore,

t=1
t=0

VAN~ [ (VD

(b): The proof is the following string of equivalences:

for every I' a proper variation of v we have that 0 = —

E(7s)

s=0

S

1
<= for every I a proper variation of v we have that 0 = (V,5)|'=5 — / (V,Dy5)dt
0

1
<= for every I' a proper variation of v we have that 0 = / (V,Dy5)dt
0

— D=0
<= 7 is a geodesic.

d2
dsQE(vs) .
d I or
_@A<ma’m>“
19/ ar ar
=/ aS<Dta ’8t>dt
1 ar ar ar
:A(@”la m>+<t%’
1 b Or or
= [ ({55 ) + (rEs.T)
__/1<a< or ar> <D or
~Jo \O 885
a 1
- (D55 > [ (-(v.5

>>dt

o ot or |2
a m>+'mas)“
7L o ar |2
> (R 5 )+ [P | e
ar T oL 2
> <<Sﬂasa»+wmas)&
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tl—f—/l—DD' +<R(@ V)V, A + D,V 2dt
s , Dt a’Y) a’7> ” t ||
0 ()S

+ [ ((RVAV.A) + DY)

t=0
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12 Exercise sheet No. 12 - 11-02-2021

Review of Homotopy theory. In this exercise sheet, we will need to use some ba-
sic facts about homotopy theory, which we now review. Let X be a locally compact
Hausdorff space and Y be a connected Hausdorff space. Denote by C(X,Y) the set of
continuous maps from X to Y. Denote I = [0, 1].

Homotopies, point of view 1. We say that f,g € C(X,Y) are homotopic if
there exists a continuous map H: I x X — Y such that H(0,-) = f and H(1,-) = g.
In this case, H is a homotopy from f to g. "Homotopic" is an equivalence relation on
C(X,Y). A homotopy class is an equivalence class under this equivalence relation.

Compact-open topology and exponential law. Now, instead of viewing a ho-
motopy as a map H: I x X — Y, we would like to view it as a path of continuous
functions h: I — C(X,Y). To do this, we need to give C(X,Y’) the structure of a
topological space. The compact-open topology on C'(X,Y) is the topology generated
by sets of the form

Skv ={f € CX,Y) | f(K) C U},

for K C X compact and U C Y open. If Y is a metric space and X is compact, then
convergence with respect to the compact-open topology is the same thing as uniform
convergence. If in addition X and Y are manifolds, then the compact-open topology
also coincides with the C°-topology. Consider the map

®: C(I x X,Y) — C(I,C(X,Y))
Hr— h=®(H)

where h(t)(z) = H(t,z) fort € I and z € X. Since X is a locally compact Hausdorff and
Y is Hausdorff, then ® is a homeomorphism (this is a theorem, it’s not supposed to be
obvious!). This theorem is called the exponential law for topological spaces, because
it can also be written Y/*X = (Y X)I,

Homotopies, point of view 2. Using this information, we can now say that for
fyg € C(X,Y) a homotopy from f to g is a path h: I — C(X,Y) from f to g. In this
language, f and g are homotopic if and only if they are in the same path component
of C'(X,Y) and we see that a homotopy class is the same thing as a path connected
component of C'(X,Y).

Contractible maps. Since Y is connected, all the constant maps X — Y are in the
same path component /homotopy class of C'(X,Y"), which we call the trivial homotopy
class. A map X — Y is contractible if it homotopic to a constant map, i.e. it is
an element of the trivial homotopy class. Y is simply connected if all elements of
C(S',Y) are contractible, or equivalently C'(S',Y") is path connected.

Loops. We will use the above facts with Y = M a manifold and X = S'. In this
case, we will say that a homotopy class of maps in C'(X,Y) is a free homotopy class of
loops. The word "loops" is because X = S'. The word "free" is because the homotopy is
a path in C(X,Y) which does not satisfy any other additional assumptions.

Exercise 12.1 (Cartan’s lemma, from | ]). Let M be a compact connected Rieman-
nian manifold which is not simply connected and let C be a nontrivial free homotopy class
of loops. Show that there exists a closed geodesic 7 in C such that {(y) = [ == inf, ¢ (7)),
as follows:
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(a) Show that there exists € > 0 such that for all p € M we have:

(a.1) for every x,y € B(p,e/2) there exists a unique geodesic 7, , connecting = and
Y;

(a.2) the map B(p,e/2) x B(p,e/2) x [0,1] — M given by (z,y,t) — v, (1) is
smooth.

(Hint: cover M by a finite suitable family of totally normal neighbourhoods).

(b) Choose (n;); a sequence of smooth loops in C such that lim; , o I(n;) = 1 =
inf,cc [(n) and each n;: [0, 1] — M is parametrized with constant speed (here we
used that C*(S', M) is a dense subset of C(S*, M)). Define L = sup, [(n;) < +oo.
Choose a subdivision 0 = t; < t; < --- < t, = 1 with t;, — t;,_; < €/2L for
i=1,...,n. Show that d(n;(t;_1),n,(t)) < e/2 for every ¢ and t € [t;_1,1;].

(c) For each j define 7; to be the broken geodesic joining 1;(0),n;(t1), ..., n;(1) (which
we can do by the two previous steps). Since M is compact we can pass to a
subsequence (which we denote by the same index j) such that ~;(¢;) converges as
Jj — 400 to p; € M for every i. Show that d(p;_1,p;) < €/2 for every i.

(d) Define 7 to be the broken geodesic joining py, ..., p,. Show that « is as desired.

Solution. (a): Recall the following fact: for every p € M, there exists a § > 0 and a
neighbourhood U of p such that U is -totally normal, i.e.

(a) For all z,y € U there exists a unique geodesic v,,, from z to y.
(b) The map U x U x [0,1] — M given by (x,y,t) — 74,(t) is smooth.
(c) Forallz e U, it V :=exp,(B(0,0)) then exp,: B(0,6) — V is a diffeomorphism.

Use this fact to cover M by finitely many balls B(p;, ;/2) such that B(p;, &;) is a d;-totally
normal ball. Define ¢ = min; ¢;/2. We show that ¢ is as desired.

For p € M, we prove (a.l). It suffices to assume that =,y € B(p,&/2) and to prove
that there exists a unique geodesic v,, from x to y. Let ¢ be such that = € B(p;,e;/2).
Then, y € B(p;,&;):

< €+8i/2
<eif2+ )2
= &;.

Since z,y € B(p;,€;), which is a d;-totally normal ball, there exists a geodesic v,,, from
T to y.

For p € M, we prove (a.2). We need to show that B(p,e/2) x B(p,e/2) x[0,1] — M
is smooth. We show that this map is smooth at (z,y,t) € B(p,e/2) x B(p,&/2) x [0, 1].
In a neighbourhood of (z,y,t), this map coincides with the map B(p;, ;) x B(pi,&;) X
[0,1] — M (from the definition of totally normal), which is smooth.
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t
d(ni(ti—1),m;(t)) < / 1n;(s)||ds [by definition of distance]

1—1

t;
< [ lig(s)las
ti—1

7

(ti — ti—1)||7;(0)|] [n; is parametrized with constant speed]
< (ti —tii) L [L = sup; I(1;)]
<e/2 [ti —ti1 <e/2Lfori=1,...,n]|.

(c): By definition of v;,

d(;(ti-1), 75 (t:)) = d(n; (tiv),m(t:)) < /2.

Passing to the limit and using the fact that the distance d is continuous,

lim d(v;(ti-1),7;(t:) = d(pi-1,pi) < /2.

Jj—+oo

(d): We show that 7 is in C. First, recall that all the 7; are in C. We now show that
all the 7; are in C. It suffices to show that n; is homotopic to ;. For all t € [t;_1, ],

d(;(t),m;(t)) < e:

d(v;(t),m; (1)) < d(7; (1), v (ti-1)) + d(v;(ti-1),n;(1))
= d(7;(t),7(ti-1)) + d(n;(ti-1),m;(t))
<e/2+¢/2
= £.

Using this, we can build a homotopy from 7;|i,_,+] to 7|4, by using the shortest
geodesic from 7;(t) to n;(t). This concludes the proof that all the +; are in C. By
definition of 7, the v; converge to 7 (as elements of C(S*, M) equipped with the compact-
open topology). Also, C C C(S', M) is a path-connected component. So, v is in C.

We show that () = [.

1(y) =2 d(y(ti), v (t:)
= lim Zd 'YJ i— 1) '7]( ))

]%+oo

< lim Zl 1;

j—>+<>o

=1
= inf I(n)

neC

< 1(7)-

[t’L lt})
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We show that v is a geodesic. It suffices to show that 7 is locally length minimizing.
Assume by contradiction that ~ is not locally length minimizing. Then, there exists a
curve 4" € C such that [(y') < I(y) (7 is in C because C is open and 7' can be taken to
be "near" 7). Then,

1Y) < 1(v)

— inf
inf I(n)
<1(7)
gives us a contradiction. O
Exercise 12.2 (Synge’s theorem, from | ]). Let M be a Riemannian manifold which

is even dimensional, orientable, compact, connected and has positive sectional curvature
(at every point p € M, for every 2-dimensional subspace of T,M). Show that M is
simply connected, as follows. Assume by contradiction that there exists C a nontrivial
free homotopy class of loops. By Cartan’s lemma, there exists v: [0,1] — M a closed
geodesic in C parametrized with constant speed such that [(y) = inf,ecl(n). Define
p = v(0) = v(1), v = §(0) = 4(1) and let P: T,M — T,M be the parallel transport
map along ~.

(a) Sholw that P: T,M — T,M is orientation preserving, P(v) = v and P({v)*) =
{v)~.

(b) Show that there exists w € (v)* such that P(w) = w. (Hint: consider the canonical
form for elements of the orthogonal group).

(c) Define V' to be the vector field along 7 given by parallel transporting w along ~.
Define I" to be the variation of v coming from v and V' and ~,(t) = I'(s, t). Show
that

d d?

E(ys) =0 and 12 SZOE(%) <0

& s=0
and use these facts to derive a contradiction.

Solution. (a): Consider the map P,: T,M — T, M defined via parallel transport along
. This gives us a continuous family of maps (P;); such that P, = idr, s is orientation
preserving and P; = P. Therefore P is orientation preserving. By definition of geodesic
and of parallel transport, P, maps v = %(0) to §(¢), and therefore P(v) = P(¥(0)) =
4(1) = 4(0) = v. Since P is an isometry, P({v)1) = (P(v))* = (v)*.

(b): Let 2n = dim M. Choose an orthonormal basis for (v)*, and consider the
induced linear isometry (v)* — R**~!. Use this isometry to view P: (v)* — (v)*
as a map P: R?""! — R?"1 Then, P is an element of SO(2n — 1) C O(2n — 1).
It suffices to show that 1 is an eigenvalue of P. By the canonical form for elements of
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O(2n — 1), after an isometric coordinate change we can write P as

R, -~ 0 0 0
— 1o R. 0 0
P=1y 0 (—1)h 0 |

0 0 0 (—1)%

where Ry, ..., Ry are 2 X 2 rotation matrices. Then 2k + [ = 2n — 1 which implies that [
is odd. Then, 1 = det P = (—1)%1* it which implies that j; + - -- + j; is even. Since [ is
odd this implies that there exists ¢« = 1,...,[ such that j; = 0. Then 1 is an eigenvalue
of P: R?"=1 — R?n— 1,
(c): We show that .

:OE('YS) = 0:

d

1
- s — [ (v.De)de

E(vs) =

s=0

Vi
0.

The second derivative can be computed by

d2

ds?

80w = (Do )|+ [ (R + DV ) a

=/ (R(V,5)V,)dt
0
< 0,

where in the last equality we used the fact that M has positive sectional curvature.
So, there exists an € > 0 such that the function [0,e] — R given by s — E(7s) is
strictly decreasing. Then,

s=0

1(v)? < U(vs)? [y is a geodesic]
< /0 1 || s (t )||dt> 2 [by definition of length)]
< < /0 1 1dt> ( /0 1||%(t)||2dt> [Holder’s inequality]
= 2E(vs) [by definition of Energy]
< E(v) [by the discussion above]
= /1||7(t)||2dt [by definition of E(v)]
= l(oﬁy)2 [y is parametrized with constant speed],
which is a contradiction. ]
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