Symplectic capacities

Miguel Pereira

Universität Augsburg

23-11-2020

Miguel Pereira (Universität Augsburg)

Symplectic capacities

23-11-2020

Table of Contents

- Symplectic manifolds
- 2 Symplectic capacities
- 3 Application: Gromov's nonsqueezing theorem
- Examples of capacities
- 5 Lagrangian capacity

Definition (symplectic manifold)

A symplectic manifold is a pair (M, ω) where M is a smooth manifold and $\omega \in \Omega^2(M)$ is closed and nondegenerate. An exact symplectic manifold is a pair (M, θ) such that $(M, d\theta)$ is a symplectic manifold.

Definition (symplectic embedding)

Let (M, ω_M) , (N, ω_N) be symplectic manifolds. A **symplectic** embedding from M to N is an embedding $f: M \longrightarrow N$ such that $f^*\omega_N = \omega_M$. If (M, θ_M) , (N, θ_N) are exact symplectic manifolds, an exact symplectic embedding from M to N is an embedding $f: M \longrightarrow N$ such that $f^*\theta_N = \theta_M$;

Example (symplectic manifolds)

- Consider ℝ²ⁿ with coordinates (x¹,...,xⁿ, y¹,..., yⁿ). Define θ₀ = Σⁿ_{j=1} x^jdy^j. Then, ω₀ = dθ₀ = Σⁿ_{j=1} dx^j ∧ dy^j is symplectic and (ℝ²ⁿ, θ₀) is an exact symplectic manifold.
- ② Let *M* be a manifold and consider it's cotangent bundle π: *T***M* → *M*. Define a form θ ∈ Ω¹(*T***M*), called the canonical symplectic potential, or Liouville form, by

Then, (T^*M, θ) is an exact symplectic manifold.

Theorem (Darboux' theorem and implications)

Let (M, ω) be a symplectic manifold. Then,

• For every $p \in M$, there exists a coordinate neighborhood $(U, q_1, \ldots, q_n, p_1, \ldots, p_n)$ of p such that

$$\omega = \sum_{i=1}^n dp_i \wedge dq_i.$$

M is even dimensional.

 \circ ω^n is a volume form on M, and M is orientable.

Definition (Lagrangian submanifold)

Let (M, ω) be a 2*n*-dimensional symplectic manifold and $\iota: L \longrightarrow M$ be an embedded submanifold. *L* is **Lagrangian** if dim L = n and $\iota^* \omega = 0$.

Remark (notation)

In this section, SMan(n) denotes the category whose objects are symplectic manifolds of dimension 2n and whose morphisms are symplectic embeddings.

Example (subsets of \mathbb{C}^n)

The ball, ellipsoid and cylinder are subsets of $\mathbb{C}^n \cong \mathbb{R}^{2n}$:

$$B(r) = \{z \in \mathbb{C}^n \mid |z_1|^2 + \dots + |z_n|^2 \le r^2\},\$$

$$E(r_1, \dots, r_n) = \left\{z \in \mathbb{C}^n \mid \frac{|z_1|^2}{r_1^2} + \dots + \frac{|z_1|^2}{r_n^2} \le 1\right\},\$$

$$Z(r) = \{z \in \mathbb{C}^n \mid |z_1|^2 \le r^2\}.$$

So, all three of them are exact symplectic manifolds.

Definition (symplectic capacity)

A symplectic capacity is a function $c: \mathbf{SMan}(n) \longrightarrow [0, \infty]$ such that

(Monotonicity) If there exists a symplectic embedding $\varphi \colon (M, \omega_M) \longrightarrow (N, \omega_N)$, then $c(M, \omega_M) \leq c(N, \omega_N)$; (Conformality) For all $\alpha \in \mathbb{R} \setminus \{0\}$ and for all (M, ω) a 2n-dimensional symplectic manifold we have that $c(M, \alpha \omega) = |\alpha|c(M, \omega)$; (Nontriviality) $0 < c(B(1), \omega_0)$ and $c(Z(1), \omega_0) < +\infty$.

Definition (normalization)

A symplectic capacity c satisfies the **normalization** axiom if $0 < c(B(1), \omega_0) = \pi = c(Z(1), \omega_0) < +\infty$.

Theorem (Gromov's nonsqueezing)

There exists a symplectic embedding $\varphi \colon B(r) \longrightarrow Z(R)$ if and only if $r \leq R$.

Definition (Gromov width)

The **Gromov width** is the function $c_{\mathrm{Gr}} \colon \mathbf{SMan}(n) \longrightarrow [0,\infty]$ given by

$$c_{\mathrm{Gr}}(M,\omega) = \sup\{\pi r^2 \mid \exists \text{ symplectic embedding } \varphi \colon B(r) \longrightarrow M\}.$$

8 / 28

Proposition (Gromov width is the smallest capacity)

Assume that $c_{\rm Gr}$ is a normalized symplectic capacity and that c is a symplectic capacity. Then, for every symplectic manifold (M, ω) we have

$$c_{\mathrm{Gr}}(M,\omega) \leq rac{\pi}{c(B(1))}c(M,\omega).$$

Proposition (Gromov's nonsqueezing $\iff \exists$ normalized capacity)

The following are equivalent

- The Gromov width is a normalized symplectic capacity;
- Intere exists a normalized symplectic capacity;
- Solution Gromov's nonsqueezing theorem is true, i.e. for r, R > 0 there exists a symplectic embedding $B(r) \hookrightarrow Z(R)$ if and only if $r \leq R$.

Proof.

 $\begin{array}{l} 1 \Longrightarrow 2: \mbox{ Trivial.} \\ 2 \Longrightarrow 3: \mbox{ If } r \leq R, \mbox{ then } \iota \colon B(r) \longrightarrow Z(R) \mbox{ is a symplectic embedding. Conversely,} \end{array}$

$$egin{aligned} r^2\pi &= r^2c(B(1)) & [c ext{ is normalized}] \ &= c(B(r)) & [ext{capacity of rescaled set}] \ &\leq c(Z(R)) & [ext{by assumption and monotonicity}] \ &= R^2c(Z(1)) & [ext{capacity of rescaled set}] \ &= R^2\pi & [c ext{ is normalized}]. \end{aligned}$$

Proof (Cont.)

 $3 \implies 1$: That $c_{\rm Gr}$ satisfies monotonicity and conformality is a simple, if a bit lengthy, proof. The proof of these properties being true does not depend on Gromov's nonsqueezing theorem being true. It remains to show normalization, i.e. that $c_{\rm Gr}(B(1)) = \pi$ and $c_{\rm Gr}(Z(1)) = \pi$. For this, define

$$\begin{split} \mathcal{S} &= \{\pi r^2 \mid r \leq 1\},\\ \mathcal{S}_B &= \{\pi r^2 \mid \text{there exists a symplectic embedding } \mathcal{B}(r) \hookrightarrow \mathcal{B}(1)\},\\ \mathcal{S}_Z &= \{\pi r^2 \mid \text{there exists a symplectic embedding } \mathcal{B}(r) \hookrightarrow \mathcal{Z}(1)\}. \end{split}$$

Then, $S \subset S_B \subset S_Z \subset S$ by Gromov's nonsqueezing theorem. Therefore, $c_{Gr}(B(1)) = \sup S_B = \sup S = \pi$, and analogously $c_{Gr}(Z(1)) = \sup S_Z = \sup S = \pi$.

Table: Examples of symplectic capacities. See the introduction of [GH18].

notation	name	domain	technique	reference
$c_k,\ k\in\mathbb{N}$	equivariant capacities	Liouville domains	<i>S</i> ¹ -equivariant symplec- tic homology	[GH18]
$c_k^{ ext{EH}}$, $k\in\mathbb{N}$	Ekeland-Hofer capacities	compact star- shaped domains in \mathbb{R}^{2n}	calculus of variations for the symplectic action functional on $C^{\infty}(S^1, \mathbb{R}^{2n})$	[EH89]
$egin{aligned} & c_k^{ ext{ECH}}, \ & k \in \mathbb{N}_0 \end{aligned}$	ECH capaci- ties	4-dimensional Li- ouville domains	embedded contact ho- mology	[Hut10]
c_{\bigcirc} , c_{Gr}	embedding of ball, Gromov width	symplectic mani- folds	embedding capacity	-
c□	embedding of cube	symplectic mani- folds	embedding capacity	-
cL	Lagrangian capacity	symplectic mani- folds	-	[CM18]
<i>c</i> ₀	-	symplectic mani- folds	oscillation of admissible Hamiltonians	[HZ11]

Remark ($\omega \colon \pi_2(M, L) \longrightarrow \mathbb{R}$)

Let (M, ω) be a symplectic manifold and $L \subset M$ be a Lagrangian submanifold. Then, ω can be seen as a map $\pi_2(M, L) \longrightarrow \mathbb{R}$ as follows. An element of $\pi_2(M, L)$ can be seen as an equivalence class of a map $\sigma: (D, S^1) \longrightarrow (M, L)$. Then, $\omega([\sigma]) = \int_D \sigma^* \omega$. To show that this is well defined, we need to use the fact that L is Lagrangian. Definition (minimal symplectic area of a Lagrangian submanifold) Let (X, ω) be a symplectic manifold. If *L* is a Lagrangian submanifold of *X*, then we define the **minimal symplectic area of** *L*, $A_{\min}(L)$, by

$$\begin{aligned} A_{\min}(L) &\coloneqq \inf \left\{ \omega(\sigma) \mid \sigma \in \pi_2(X,L), \ \omega(\sigma) > 0 \right\} \\ &= \inf \left\{ \int_D u^* \omega \mid u \colon (D,\partial D) \longrightarrow (X,L), \ \int_D u^* \omega > 0 \right\} \\ &\in [0,\infty]. \end{aligned}$$

Lemma (A_{\min} with exact ambient symplectic manifold)

Let (M, λ) be an exact symplectic manifold and $L \subset M$ a Lagrangian submanifold. If $\pi_1(M) = \{0\}$, then

$$\mathcal{A}_{\min}(\mathcal{L}) = \inf \left\{ \lambda(
ho) \mid
ho \in \pi_1(\mathcal{L}), \; \lambda(
ho) > \mathsf{0}
ight\}.$$

Proof.

The following diagram commutes

where $d([\sigma]) = [\sigma|_{S^1}]$ and the top row is exact.

16 / 28

Lemma (A_{\min} of a Lagrangian torus in \mathbb{C}^n)

For r > 0, let $L_r = \{z \in \mathbb{C}^n \mid |z_1|^2 = \cdots = |z_n|^2 = r^2\}$. Then, L_r is a Lagrangian submanifold of \mathbb{C}^n and $A_{\min}(L_r) = \pi r^2$.

Proof.

Use the previous lemma.

Definition (Lagrangian capacity)

We define the Lagrangian capacity of (X, ω) , $c_L(X, \omega)$, by

 $c_L(X,\omega) \coloneqq \sup\{A_{\min}(L) \mid L \subset X \text{ embedded Lagrangian torus}\} \in [0,\infty].$

Proposition (Properties of the Lagrangian capacity)

The Lagrangian capacity c_L satisfies: (Monotonicity) If $\iota: (X, \omega) \longrightarrow (X', \omega')$ is a symplectic embedding s.t. $\pi_2(X', \iota(X)) = 0$, then $c_L(X, \omega) \le c_L(X', \omega')$. (Conformality) For all $\alpha \in \mathbb{R} \setminus \{0\}$, $c_L(X, \alpha \omega) = |\alpha| c_L(X, \omega)$.

Proof (of Monotonicity).

It suffices to assume that $L \subset X$ is an embedded Lagrangian torus and to prove that $A_{\min}(L, X) = A_{\min}(\iota(L), X')$. (\geq) : Easy, doesn't depend on $\pi_2(X', \iota(X)) = \{0\}$. (<): It suffices to assume that D' is a disk as in the definition of $A_{\min}(\iota(L), X')$ and to prove that there exists a disk D as in the definition of $A_{\min}(L, X)$ such that $\int_{D} \omega = \int_{D'} \omega$. Since $\pi_2(X', \iota(X)) = \{0\}$, there exists a disk D as in the definition of $A_{\min}(L,X)$ such that D and D' have the same boundary and the sphere obtained by gluing D and D' has homotopy class 0. The disk D is as desired.

Proposition (Lagrangian capacity of the ball) $c_L(B(1)) = \pi/n.$

Proof.

 (\geq) : It suffices to show that there exists $L \subset B(1)$ an embedded Lagrangian torus such that $A_{\min}(L) = \pi/n$. Define

$$L = \{z \in \mathbb{C}^n \mid |z_1|^2 = \cdots = |z_n|^2 = 1/n\} \subset B(1).$$

Then, by a previous lemma, we have that $A_{\min}(L) = \pi/n$. (\leq): This is hard, depends on the main theorem of [CM18] (this theorem says that there are disks with boundary on a Lagrangian of small area, and it's proof uses holomorphic curve techniques). Drawing illustrating the proof of $c_L(B(1)) \ge \pi/n$: Define $f: \mathbb{C}^n \longrightarrow \mathbb{R}^n$ via $f(z_1, \ldots, z_n) = (|z_1|, \ldots, |z_n|)$. Then, for the case n = 2:

Proposition (Lagrangian capacity of the cylinder) $c_L(Z(1)) = \pi$.

Proof.

 (\geq) : It suffices to show that there exists $L \subset Z(1)$ an embedded Lagrangian torus such that $A_{\min}(L) = \pi$. Define

$$L = \{z \in \mathbb{C}^n \mid |z_1|^2 = \cdots = |z_n|^2 = 1\} \subset Z(1).$$

Then, by a previous lemma, we have that $A_{\min}(L) = \pi$. (\leq): Again, this is hard. Depends on the concepts of Hofer norm, Hofer energy, displacement energy, and a result of Chekanov comparing minimal area of a Lagrangian and displacement energy. See [CM18, HZ11, Che98]. Drawing illustrating the proof of $c_L(Z(1)) \ge \pi$, for the case n = 2:

Corollary (Lagrangian capacity of the ellipsoid)

Let $E(r_1, \ldots, r_n) \subset \mathbb{C}^n$ be an ellipsoid and let $r_k = \min\{r_1, \ldots, r_n\}$. Then,

$$\frac{\pi}{n}r_k^2 \leq \pi \left(\frac{1}{r_1^2} + \cdots + \frac{1}{r_n^2}\right)^{-1} \leq c_L(E(r_1,\ldots,r_n)) \leq \pi r_k^2.$$

Proof.

Notice that $B(r_k) \subset E(r_1, \ldots, r_n) \subset Z(r_k)$. Define

$$r^2 = \left(\frac{1}{r_1^2} + \cdots + \frac{1}{r_n^2}\right)^{-1}$$

and $L = \{z \in \mathbb{C}^n \mid |z_1|^2 = \cdots = |z_n|^2 = r^2\} \subset E(r_1, \ldots, r_n)$. Then, by a previous lemma, we have that $A_{\min}(L) = \pi \left(\frac{1}{r_1^2} + \cdots + \frac{1}{r_n^2}\right)^{-1}$.

Proof (Cont.)

$$\pi r_k^2 = c_L(Z(r_k))$$

$$\geq c_L(E(r_1, \dots, r_n))$$

$$\geq \pi \left(\frac{1}{r_1^2} + \cdots + \frac{1}{r_n^2}\right)^{-1}$$

$$\geq \frac{\pi}{n} r_k^2$$

[by a rescaling property of capacities] $[E(r_1, ..., r_n) \subset Z(r_k)]$ [by the computation with *L* above] [because $r_k = \min\{r_1, ..., r_k\}$].

Conjecture (Lagrangian capacity of ellipsoid, [CM18]) Let $E(r_1, ..., r_n) \subset \mathbb{C}^n$ be an ellipsoid. Then,

$$c_L(E(r_1,\ldots,r_n))=\pi\Big(\frac{1}{r_1^2}+\cdots+\frac{1}{r_n^2}\Big)^{-1}.$$

References I

- [Che98] Yu. V. Chekanov. Lagrangian intersections, symplectic energy, and areas of holomorphic curves. *Duke Math. J.*, 95(1):213–226, 10 1998.
- [CM18] K. Cieliebak and K. Mohnke. Punctured holomorphic curves and lagrangian embeddings. *Invent. Math.*, 212(1):213–295, 2018.
- [EH89] I. Ekeland and H. Hofer. Symplectic topology and Hamiltonian dynamics. *Mathematische Zeitschrift*, 200(3):355–378, September 1989.
- [GH18] Jean Gutt and Michael Hutchings. Symplectic capacities from positive S¹-equivariant symplectic homology. Algebraic & Geometric Topology, 18(6):3537–3600, October 2018.

References II

- [Hut10] Michael Hutchings. Quantitative embedded contact homology. *arXiv:1005.2260 [math]*, May 2010.
- [HZ11] Helmut Hofer and Eduard Zehnder. *Symplectic Invariants and Hamiltonian Dynamics*. Springer Basel, Basel, 2011.

Thank you for listening!