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Symplectic manifolds

Definition (symplectic manifold)

A symplectic manifold is a pair (M, ω) where M is a smooth
manifold and ω ∈ Ω2(M) is closed and nondegenerate. An exact
symplectic manifold is a pair (M, θ) such that (M, dθ) is a
symplectic manifold.

Definition (symplectic embedding)

Let (M, ωM), (N , ωN) be symplectic manifolds. A symplectic
embedding from M to N is an embedding f : M −→ N such that
f ∗ωN = ωM . If (M, θM), (N , θN) are exact symplectic manifolds, an
exact symplectic embedding from M to N is an embedding
f : M −→ N such that f ∗θN = θM ;
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Symplectic manifolds

Example (symplectic manifolds)

1 Consider R2n with coordinates (x1, . . . , xn, y 1, . . . , yn). Define
θ0 = ∑n

j=1 x jdy j . Then, ω0 = dθ0 = ∑n
j=1 dx j ∧ dy j is

symplectic and (R2n, θ0) is an exact symplectic manifold.
2 Let M be a manifold and consider it’s cotangent bundle

π : T ∗M −→ M. Define a form θ ∈ Ω1(T ∗M), called the
canonical symplectic potential, or Liouville form, by

T(p,α)(T ∗M)

TpM R.

dπ(p,α)
θ(p,α)

α

Then, (T ∗M, θ) is an exact symplectic manifold.

Miguel Pereira (Universität Augsburg) Symplectic capacities 23-11-2020 4 / 28



Symplectic manifolds

Theorem (Darboux’ theorem and implications)
Let (M, ω) be a symplectic manifold. Then,

1 For every p ∈ M, there exists a coordinate neighborhood
(U , q1, . . . , qn, p1, . . . , pn) of p such that

ω =
n∑

i=1
dpi ∧ dqi .

2 M is even dimensional.
3 ωn is a volume form on M, and M is orientable.

Definition (Lagrangian submanifold)
Let (M, ω) be a 2n-dimensional symplectic manifold and ι : L −→ M
be an embedded submanifold. L is Lagrangian if dim L = n and
ι∗ω = 0.

Miguel Pereira (Universität Augsburg) Symplectic capacities 23-11-2020 5 / 28



Symplectic capacities

Remark (notation)
In this section, SMan(n) denotes the category whose objects are
symplectic manifolds of dimension 2n and whose morphisms are
symplectic embeddings.

Example (subsets of Cn)
The ball, ellipsoid and cylinder are subsets of Cn ∼= R2n:

B(r) = {z ∈ Cn | |z1|2 + · · · + |zn|2 ≤ r 2},

E (r1, . . . , rn) =
{

z ∈ Cn
∣∣∣∣ |z1|2

r 2
1

+ · · · + |z1|2

r 2
n

≤ 1
}

,

Z (r) = {z ∈ Cn | |z1|2 ≤ r 2}.

So, all three of them are exact symplectic manifolds.
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Symplectic capacities

Definition (symplectic capacity)
A symplectic capacity is a function c : SMan(n) −→ [0, ∞] such
that
(Monotonicity) If there exists a symplectic embedding

φ : (M, ωM) −→ (N , ωN), then c(M, ωM) ≤ c(N , ωN);
(Conformality) For all α ∈ R \ {0} and for all (M, ω) a

2n-dimensional symplectic manifold we have that
c(M, αω) = |α|c(M, ω);

(Nontriviality) 0 < c(B(1), ω0) and c(Z (1), ω0) < +∞.

Definition (normalization)
A symplectic capacity c satisfies the normalization axiom if
0 < c(B(1), ω0) = π = c(Z (1), ω0) < +∞.
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Application: Gromov’s nonsqueezing theorem

Theorem (Gromov’s nonsqueezing)
There exists a symplectic embedding φ : B(r) −→ Z (R) if and only if
r ≤ R.

Definition (Gromov width)
The Gromov width is the function cGr : SMan(n) −→ [0, ∞] given
by

cGr(M, ω) = sup{πr 2 | ∃ symplectic embedding φ : B(r) −→ M}.
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Application: Gromov’s nonsqueezing theorem
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Application: Gromov’s nonsqueezing theorem

Proposition (Gromov width is the smallest capacity)
Assume that cGr is a normalized symplectic capacity and that c is a
symplectic capacity. Then, for every symplectic manifold (M, ω) we
have

cGr(M, ω) ≤ π

c(B(1))c(M, ω).

Proposition (Gromov’s nonsqueezing ⇐⇒ ∃ normalized capacity)
The following are equivalent

1 The Gromov width is a normalized symplectic capacity;
2 There exists a normalized symplectic capacity;
3 Gromov’s nonsqueezing theorem is true, i.e. for r , R > 0 there

exists a symplectic embedding B(r) ↪→ Z (R) if and only if
r ≤ R.
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Application: Gromov’s nonsqueezing theorem

Proof.
1 =⇒ 2: Trivial.
2 =⇒ 3: If r ≤ R , then ι : B(r) −→ Z (R) is a symplectic
embedding. Conversely,

r 2π = r 2c(B(1)) [c is normalized]
= c(B(r)) [capacity of rescaled set]
≤ c(Z (R)) [by assumption and monotonicity]
= R2c(Z (1)) [capacity of rescaled set]
= R2π [c is normalized].
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Application: Gromov’s nonsqueezing theorem

Proof (Cont.)
3 =⇒ 1: That cGr satisfies monotonicity and conformality is a
simple, if a bit lengthy, proof. The proof of these properties being
true does not depend on Gromov’s nonsqueezing theorem being true.
It remains to show normalization, i.e. that cGr(B(1)) = π and
cGr(Z (1)) = π. For this, define

S = {πr 2 | r ≤ 1},

SB = {πr 2 | there exists a symplectic embedding B(r) ↪→ B(1)},

SZ = {πr 2 | there exists a symplectic embedding B(r) ↪→ Z (1)}.

Then, S ⊂ SB ⊂ SZ ⊂ S by Gromov’s nonsqueezing theorem.
Therefore, cGr(B(1)) = sup SB = sup S = π, and analogously
cGr(Z (1)) = sup SZ = sup S = π.
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Examples of capacities

Table: Examples of symplectic capacities. See the introduction of [GH18].

notation name domain technique reference

ck ,
k ∈ N

equivariant
capacities

Liouville domains S1-equivariant symplec-
tic homology

[GH18]

cEH
k ,

k ∈ N

Ekeland-Hofer
capacities

compact star-
shaped domains in
R2n

calculus of variations
for the symplectic
action functional on
C∞(S1,R2n)

[EH89]

cECH
k ,

k ∈ N0

ECH capaci-
ties

4-dimensional Li-
ouville domains

embedded contact ho-
mology

[Hut10]

c⃝, cGr
embedding of
ball, Gromov
width

symplectic mani-
folds

embedding capacity -

c□
embedding of
cube

symplectic mani-
folds

embedding capacity -

cL
Lagrangian
capacity

symplectic mani-
folds

- [CM18]

c0
- symplectic mani-

folds
oscillation of admissible
Hamiltonians

[HZ11]
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Lagrangian capacity

Remark (ω : π2(M, L) −→ R)
Let (M, ω) be a symplectic manifold and L ⊂ M be a Lagrangian
submanifold. Then, ω can be seen as a map π2(M, L) −→ R as
follows. An element of π2(M, L) can be seen as an equivalence class
of a map σ : (D, S1) −→ (M, L). Then, ω([σ]) =

∫
D σ∗ω. To show

that this is well defined, we need to use the fact that L is Lagrangian.
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Lagrangian capacity

Definition (minimal symplectic area of a Lagrangian submanifold)
Let (X , ω) be a symplectic manifold. If L is a Lagrangian submanifold
of X , then we define the minimal symplectic area of L, Amin(L), by

Amin(L) := inf {ω(σ) | σ ∈ π2(X , L), ω(σ) > 0}

= inf
{∫

D
u∗ω

∣∣∣∣ u : (D, ∂D) −→ (X , L),
∫

D
u∗ω > 0

}
∈ [0, ∞].
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Lagrangian capacity

Lemma (Amin with exact ambient symplectic manifold)

Let (M, λ) be an exact symplectic manifold and L ⊂ M a Lagrangian
submanifold. If π1(M) = {0}, then

Amin(L) = inf {λ(ρ) | ρ ∈ π1(L), λ(ρ) > 0} .

Proof.
The following diagram commutes

π2(L) π2(M) π2(M, L) π1(L) π1(M)

R R R R R

0 ω ω

d

λ

0

λ

id id id id

,

where d([σ]) = [σ|S1] and the top row is exact.
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Lagrangian capacity

Lemma (Amin of a Lagrangian torus in Cn)

For r > 0, let Lr = {z ∈ Cn | |z1|2 = · · · = |zn|2 = r 2}. Then, Lr is a
Lagrangian submanifold of Cn and Amin(Lr) = πr 2.

Proof.
Use the previous lemma.
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Lagrangian capacity

Definition (Lagrangian capacity)
We define the Lagrangian capacity of (X , ω), cL(X , ω), by

cL(X , ω) := sup{Amin(L) | L ⊂ X embedded Lagrangian torus}
∈ [0, ∞].

Proposition (Properties of the Lagrangian capacity)

The Lagrangian capacity cL satisfies:
(Monotonicity) If ι : (X , ω) −→ (X ′, ω′) is a symplectic embedding

s.t. π2(X ′, ι(X )) = 0, then cL(X , ω) ≤ cL(X ′, ω′).
(Conformality) For all α ∈ R\{0}, cL(X , αω) = |α|cL(X , ω).
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Lagrangian capacity

Proof (of Monotonicity).
It suffices to assume that L ⊂ X is an embedded Lagrangian torus
and to prove that Amin(L, X ) = Amin(ι(L), X ′).
(≥) : Easy, doesn’t depend on π2(X ′, ι(X )) = {0}.
(≤) : It suffices to assume that D′ is a disk as in the definition of
Amin(ι(L), X ′) and to prove that there exists a disk D as in the
definition of Amin(L, X ) such that

∫
D ω =

∫
D′ ω. Since

π2(X ′, ι(X )) = {0}, there exists a disk D as in the definition of
Amin(L, X ) such that D and D′ have the same boundary and the
sphere obtained by gluing D and D′ has homotopy class 0. The disk
D is as desired.
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Lagrangian capacity

Proposition (Lagrangian capacity of the ball)
cL(B(1)) = π/n.

Proof.
(≥) : It suffices to show that there exists L ⊂ B(1) an embedded
Lagrangian torus such that Amin(L) = π/n. Define

L = {z ∈ Cn | |z1|2 = · · · = |zn|2 = 1/n} ⊂ B(1).

Then, by a previous lemma, we have that Amin(L) = π/n.
(≤) : This is hard, depends on the main theorem of [CM18] (this
theorem says that there are disks with boundary on a Lagrangian of
small area, and it’s proof uses holomorphic curve techniques).
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Lagrangian capacity

Drawing illustrating the proof of cL(B(1)) ≥ π/n: Define
f : Cn −→ Rn via f (z1, . . . , zn) = (|z1|, . . . , |zn|). Then, for the case
n = 2: 
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Lagrangian capacity

Proposition (Lagrangian capacity of the cylinder)
cL(Z (1)) = π.

Proof.
(≥) : It suffices to show that there exists L ⊂ Z (1) an embedded
Lagrangian torus such that Amin(L) = π. Define

L = {z ∈ Cn | |z1|2 = · · · = |zn|2 = 1} ⊂ Z (1).

Then, by a previous lemma, we have that Amin(L) = π.
(≤) : Again, this is hard. Depends on the concepts of Hofer norm,
Hofer energy, displacement energy, and a result of Chekanov
comparing minimal area of a Lagrangian and displacement energy.
See [CM18, HZ11, Che98].
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Lagrangian capacity

Drawing illustrating the proof of cL(Z (1)) ≥ π, for the case n = 2: 
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Lagrangian capacity

Corollary (Lagrangian capacity of the ellipsoid)
Let E (r1, . . . , rn) ⊂ Cn be an ellipsoid and let rk = min{r1, . . . , rn}.
Then,

π

n r 2
k ≤ π

( 1
r 2
1

+ · · · 1
r 2
n

)−1
≤ cL(E (r1, . . . , rn)) ≤ πr 2

k .

Proof.
Notice that B(rk) ⊂ E (r1, . . . , rn) ⊂ Z (rk). Define

r 2 =
( 1

r 2
1

+ · · · 1
r 2
n

)−1

and L = {z ∈ Cn | |z1|2 = · · · = |zn|2 = r 2} ⊂ E (r1, . . . , rn). Then,
by a previous lemma, we have that Amin(L) = π

(
1
r2
1

+ · · · 1
r2
n

)−1
.

Miguel Pereira (Universität Augsburg) Symplectic capacities 23-11-2020 24 / 28



Lagrangian capacity

Proof (Cont.)

πr 2
k = cL(Z (rk)) [by a rescaling property of capacities]

≥ cL(E (r1, . . . , rn)) [E (r1, . . . , rn) ⊂ Z (rk)]

≥ π
( 1

r 2
1

+ · · · 1
r 2
n

)−1
[by the computation with L above]

≥ π

n r 2
k [because rk = min{r1, . . . , rk}].
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Lagrangian capacity

Conjecture (Lagrangian capacity of ellipsoid, [CM18])
Let E (r1, . . . , rn) ⊂ Cn be an ellipsoid. Then,

cL(E (r1, . . . , rn)) = π
( 1

r 2
1

+ · · · 1
r 2
n

)−1
.
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Lagrangian capacity
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Lagrangian capacity
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Thank you for listening!
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