Symplectic capacities part 2 A comparison of two symplectic capacities

Miguel Pereira¹

¹Universität Augsburg

Arbeitsgruppenseminar Geometrie/Topologie, 26-04-2021

A conjecture

- 2) The definitions we need
 - Symplectic manifolds and capacities
 - Lagrangian capacity
 - Positive S^1 -equivariant symplectic homology
 - Equivariant capacities
- Tentative proof sketch of the conjecture
- 4 Consequences of the conjecture

A conjecture

- 2) The definitions we need
 - Symplectic manifolds and capacities
 - Lagrangian capacity
 - Positive S¹-equivariant symplectic homology
 - Equivariant capacities
- 3 Tentative proof sketch of the conjecture
- 4 Consequences of the conjecture

Conjecture (comparison between c_L and c_k)

If (X, λ) is a Liouville domain which satisfies $\pi_1(X) = \{0\}$ and $c_1(TX)|_{\pi_2(X)} = 0$, then

$$c_L(X,\lambda) \leq \inf_{k\in\mathbb{N}} \frac{c_k(X,\lambda)}{k}.$$

A conjecture

- The definitions we need
 - Symplectic manifolds and capacities
 - Lagrangian capacity
 - Positive S^1 -equivariant symplectic homology
 - Equivariant capacities
- 3 Tentative proof sketch of the conjecture
- 4 Consequences of the conjecture

A conjecture

The definitions we need

• Symplectic manifolds and capacities

- Lagrangian capacity
- Positive S¹-equivariant symplectic homology
- Equivariant capacities

Tentative proof sketch of the conjecture

4 Consequences of the conjecture

Definition (symplectic manifold)

A symplectic manifold is a pair (M, ω) where M is a smooth manifold and $\omega \in \Omega^2(M)$ is closed and nondegenerate. An exact symplectic manifold is a pair (M, θ) such that $(M, d\theta)$ is a symplectic manifold.

Definition (Liouville domain)

Miguel Pereira

A **Liouville domain** is a pair (X, λ) , where X is a compact, connected smooth manifold with boundary ∂X and $\lambda \in \Omega^1(X)$ is such that $d\lambda \in \Omega^2(X)$ is symplectic, $\lambda|_{\partial X}$ is contact and the orientations on ∂X coming from $(X, d\lambda)$ and coming from $\lambda|_{\partial X}$ are equal.

Symplectic capacities part 2

Definition (types of morphisms for symplectic manifolds)

Let (X, ω_X) , (Y, ω_Y) be symplectic manifolds (possibly with boundary and corners) and $\varphi \colon X \longrightarrow Y$ be an embedding. Then, φ is **symplectic** if $\varphi^* \omega_Y = \omega_X$. A **symplectomorphism** is a symplectic embedding which is a diffeomorphism. We say that φ is **strict** if $\varphi(X) \subset \text{int } Y$. If (X, λ_X) , (Y, λ_Y) are exact symplectic, then we say that

- φ is symplectic if φ^{*}λ_Y λ_X is closed (this is equivalent to the previous definition);
- φ is generalized Liouville if φ^{*}λ_Y λ_X is closed and φ^{*}λ_Y λ_X is exact on ∂X;

3
$$\varphi$$
 is **exact** if $\varphi^* \lambda_Y - \lambda_X$ is exact;

9
$$\varphi$$
 is **Liouville** if $\varphi^* \lambda_Y - \lambda_X = 0$.

Definition (categories of symplectic manifolds)

- Define a category **S** whose objects are symplectic manifolds (possibly with boundary) and whose morphisms are 0-codimensional symplectic embeddings.
- Define a category L as follows. An object of L is a nondegenerate Liouville domain (X, λ) such that π₁(X) = {0}, c₁(TX)|_{π2(X)} = 0. Morphisms in L are either identities or 0-codimensional strict exact symplectic embeddings φ: (X, λ_X) → (Y, λ_Y).

Definition (symplectic capacity)

A domain for a symplectic capacity is a subcategory **D** of **S** such that $(M, \omega) \in \mathbf{D}$ implies $(M, \alpha \omega) \in \mathbf{D}$ for all $\alpha \in \mathbb{R} \setminus \{0\}$. A symplectic capacity is a map $c \colon \mathbf{D} \longrightarrow [0, +\infty]$, where **D** is a domain for a symplectic capacity, such that

(Monotonicity) c is a functor, i.e. if $(M, \omega_M) \longrightarrow (N, \omega_N)$ is a morphism in **D** then $c(M, \omega_M) \le c(N, \omega_N)$.

(Conformality) For every $\alpha \in \mathbb{R}$ and $(M, \omega) \in \mathbf{D}$ we have that $c(M, \alpha \omega) = |\alpha| c(M, \omega)$.

If $B(1), Z(1) \in \mathbf{D}$, then c is **nontrivial** or **normalized** if it satisfies (respectively):

(Nontriviality)
$$0 < c(B(1)) < c(Z(1)) < +\infty$$
.

(Normalization) $0 < c(B(1)) = 1 = c(Z(1)) < +\infty$.

A conjecture

The definitions we need

- Symplectic manifolds and capacities
- Lagrangian capacity
- Positive S¹-equivariant symplectic homology
- Equivariant capacities

Tentative proof sketch of the conjecture

4 Consequences of the conjecture

Definition (minimal symplectic area of a Lagrangian submanifold) Let (X, ω) be a symplectic manifold. If *L* is a Lagrangian submanifold of *X*, then we define the **minimal symplectic area of** *L*, $A_{\min}(L)$, by

$$\begin{aligned} A_{\min}(L) &\coloneqq \inf \left\{ \omega(\sigma) \mid \sigma \in \pi_2(X,L), \ \omega(\sigma) > 0 \right\} \\ &= \inf \left\{ \int_D u^* \omega \mid u \colon (D,\partial D) \longrightarrow (X,L), \ \int_D u^* \omega > 0 \right\} \\ &\in [0,\infty]. \end{aligned}$$

Definition (Lagrangian capacity)

We define the Lagrangian capacity of (X, ω) , $c_L(X, \omega)$, by

 $c_L(X,\omega) \coloneqq \sup\{A_{\min}(L) \mid L \subset X \text{ embedded Lagrangian torus}\} \in [0,\infty].$

Proposition (Properties of the Lagrangian capacity)

The Lagrangian capacity c_L satisfies: (Monotonicity) If $\iota: (X, \omega) \longrightarrow (X', \omega')$ is a symplectic embedding s.t. $\pi_2(X', \iota(X)) = 0$, then $c_L(X, \omega) \le c_L(X', \omega')$. (Conformality) For all $\alpha \in \mathbb{R} \setminus \{0\}$, $c_L(X, \alpha \omega) = |\alpha| c_L(X, \omega)$.

Proposition (Lagrangian capacity of the ball, [CM18]) $c_L(B(1)) = 1/n.$

Proposition (Lagrangian capacity of the cylinder, [CM18]) $c_L(Z(1)) = 1.$

Conjecture (Lagrangian capacity of ellipsoid, [CM18]) Let $E(a_1, ..., a_n) \subset \mathbb{C}^n$ be an ellipsoid. Then,

$$c_L(E(a_1,\ldots,a_n))=\left(\frac{1}{a_1}+\cdots\frac{1}{a_n}\right)^{-1}.$$

A conjecture

The definitions we need

- Symplectic manifolds and capacities
- Lagrangian capacity
- Positive S^1 -equivariant symplectic homology
- Equivariant capacities
- Tentative proof sketch of the conjecture
- 4 Consequences of the conjecture

Let (X, λ) be a nondegenerate Liouville domain. We will define CH(X), the PS¹ESH of X.

Incomplete definition (completion)

The **completion** of (X, λ) is an exact symplectic manifold $(\hat{X}, \hat{\lambda})$ given as a set by $\hat{X} = X \cup_{\partial X} [0, +\infty) \times \partial X$.

Incomplete definition (some categories)

- I_X is a category whose objects are (H, J), where $H: S^1 \times \hat{X} \times S^{2M+1} \longrightarrow \mathbb{R}$ is an **admissible Hamiltonian** on \hat{X} and $J: S^1 \times S^{2M+1} \longrightarrow \text{End } T\hat{X}$ is an **admissible ACS** on \hat{X} .
- $C = Comp(Hom(\mathbb{R}, \mathbb{Q}Mod))$ is the category of complexes of filtered \mathbb{Q} -modules (up to homotopy).
- $A := Hom(\mathbb{Z} \times \mathbb{R}, \mathbb{Q}Mod) = cat.$ of graded, filtered modules.
- Homology is a functor $H: \mathbf{C} \longrightarrow \mathbf{A}$.

Incomplete definition (PS^1EFH)

• Positive S¹-equivariant Floer complex is a covariant functor

$$FC_X^+: \qquad \mathbf{I}_X \longrightarrow \mathbf{C}$$

$$(H^+, J^+) \longmapsto FC_X^+(H^+, J^+)$$

$$\downarrow \longmapsto \downarrow \phi^{-,+} \quad (\text{Floer continuation map})$$

$$(H^-, J^-) \longmapsto FC_X^+(H^-, J^-).$$

 $FC_X^+(H,J)$ is generated by $[z,\gamma]$, where $z \in S^{2M+1}$ and γ is a 1-periodic orbit of H_z .

• Positive S¹-equivariant Floer homology is

$$FH_X^+ = H \circ FC_X^+ \colon \mathbf{I}_X \longrightarrow \mathbf{C} \longrightarrow \mathbf{A}.$$

Definition (PS^1ESH)

Positive S¹-equivariant symplectic homology is

 $CH(X, \lambda) = \operatorname{colim} FH_X^+ \in \mathbf{A}.$

Theorem (PS^1ESH)

Positive S^1 -equivariant symplectic homology is a contravariant functor $CH: \mathbf{L} \longrightarrow \mathbf{A}$.

$$\begin{array}{ccc} CH \colon & \mathbf{L} \longrightarrow \mathbf{A} \\ & (X, \lambda_X) \longmapsto CH(X, \lambda_X) \\ & \varphi \downarrow \longmapsto \uparrow \varphi_1 \quad (Viterbo \ transfer \ map) \\ & (Y, \lambda_Y) \longmapsto CH(Y, \lambda_Y). \end{array}$$

A conjecture

The definitions we need

- Symplectic manifolds and capacities
- Lagrangian capacity
- Positive S¹-equivariant symplectic homology
- Equivariant capacities
- Tentative proof sketch of the conjecture
- 4 Consequences of the conjecture

Definition (equivariant capacity)

The *k*th equivariant capacity, denoted c_k , is a symplectic capacity with domain **L** which is given, for $(X, \lambda) \in \mathbf{L}$, as follows. Choose $B \subset \mathbb{C}^n$ a nondegenerate star-shaped domain and $\phi: B \longrightarrow X$ a strict exact symplectic embedding. Then, $c_k(X)$ is the infimum over a > 0 such that the following map is surjective:

$$CH^{a}_{n+2k-1}(X) \stackrel{\iota^{a}}{\longrightarrow} CH_{n+2k-1}(X) \stackrel{\phi_{!}}{\longrightarrow} CH_{n+2k-1}(B)$$

Remark (standard vs alternative definition of c_k)

Actually, the definition we gave of c_k is an alternative definition. The standard definition was given in [GH18].

- Standard definition ([GH18]): relies on additional properties of positive S¹-equivariant symplectic homology (which we did not mention), namely maps U and δ. This definition doesn't rely on choosing B.
- Alternative definition: it's possible to prove that the definition we gave and the one given in [GH18] are equivalent. Our definition doesn't depend on the maps U or δ, but depends on choosing B. We will only need the alternative definition to understand the proof of the conjecture.

A conjecture

- 2 The definitions we need
 - Symplectic manifolds and capacities
 - Lagrangian capacity
 - Positive S¹-equivariant symplectic homology
 - Equivariant capacities

Tentative proof sketch of the conjecture

Consequences of the conjecture

Step 1: suffices assume/prove

It suffices to assume that

- $(X, \lambda) \in \mathbf{L}$ (i.e. X is a nondegenerate Liouville domain with $\pi_1(X) = \{0\}$ and $c_1(TX)|_{\pi_2(X)} = 0$)
- $k \in \mathbb{N}$
- $L \subset \operatorname{int} X$ is an embedded Lagrangian torus
- $a > c_k(X, \lambda)$

and to prove that there exists $\sigma \in \pi_2(X, L)$ such that $0 < \omega(\sigma) \le a/k$.

Proof of step 1. By definition of c_L .

Step 2: constructing a tubular neighbourhood

There exists g a Riemannian metric on L and there exists $W \subset \operatorname{int} X$ a closed set containing L such that there exists a symplectomorphism $\psi \colon W \longrightarrow D^*L$ and such that for every closed geodesic γ of L, if $I(\gamma) \leq a$ then γ is not contractible and nondegenerate and $0 \leq \operatorname{ind}_{M}(\gamma) \leq n-1$.

Proof of step 2.

By the Lagrangian neighbourhood theorem plus a lemma from [CM18] which says that metrics of nonpositive sectional curvature (for example the flat metric on the torus) can be perturbed to have the desired property.

Step 3: choosing a small ball inside W

There exists $B \subset \mathbb{C}^n$ a nondegenerate Liouville domain and $\phi: B \longrightarrow X$ a strict exact symplectic embedding such that $\phi(B) \subset \text{int } W$ and the following map is surjective:

$$CH^{a}_{n+2k-1}(X) \xrightarrow{\iota^{a}} CH_{n+2k-1}(X) \xrightarrow{\phi_{!}} CH_{n+2k-1}(B)$$

Proof of step 3. By definition of $c_k(X)$ and because $c_k(X) < a$. So, until now we have the following:

Next we will use the definition of PS^1ESH and the fact that the map

$$CH^{a}_{n+2k-1}(X) \stackrel{\iota^{a}}{\longrightarrow} CH_{n+2k-1}(X) \stackrel{\phi_{!}}{\longrightarrow} CH_{n+2k-1}(B)$$

is surjective/nonzero. From now on the proof will be less rigorous.

Step 4: choosing auxiliary data

Choose H an admissible Hamiltonian and J an admissible almost complex structure on \hat{X} . Do a construction from SFT (**symplectic field theory**) called **neck stretching**, which produces a sequence of admissible almost complex structures $(J_l)_{l \in \mathbb{N}}$ which are becoming singular on ∂W .

Step 5: applying the definition of CH

For every J_l there exist

- $[z^+, \gamma^+]$ a generator of $FC^+_X(H, J_l)$ with γ^+ near ∂X ;
- $[z^-, \gamma^-]$ a generator of $FC^+_X(H, J_l)$ with γ^- near ∂B ;
- a Floer trajectory from $[z^+, \gamma^+]$ to $[z^-, \gamma^-]$: $w \colon \mathbb{R} \longrightarrow S^{2M+1}$ from z^+ to z^- and $u \colon \mathbb{R} \longrightarrow C^{\infty}(S^1, \hat{X})$ from γ^+ to γ^- s.t.

$$\frac{\partial u}{\partial s} = -J(w, u) \Big(\frac{\partial u}{\partial t} - X_{H_w} \circ u \Big).$$

Proof of step 5.

By definition of *CH* and of Viterbo transfer map, and the fact that $CH^a_{n+2k-1}(X) \longrightarrow CH_{n+2k-1}(B)$ is surjective. \Box

Updated drawing:

Step 6: applying SFT compactness

There exists a **broken punctured sphere** $F = (F^{(1)}, \ldots, F^{(N)})$ with $N \ge 2$ levels like the one drawn in the figure.

Proof of step 6.

The b.p.s. *F* is the limit of u_l as $l \rightarrow +\infty$. Recall that J_l was becoming singular on ∂W , so on the limit the u_l "break". The limit *F* of u_l exists by applying the **SFT compactness theorem**. We also need to do some broken holomorphic curve analysis to restrict the possibilities of limits that we obtain.

Step 7: index computation $m-1 \ge k$.

Ρ

roof of step 7.

$$0 \leq \operatorname{ind}(C)$$

 $= (n-3)(1-m) + \sum_{j=1}^{m} \mu_{CZ}(\gamma_j) - \mu_{CZ}(\gamma^-)$
 $\leq (n-3)(1-m) + \sum_{j=1}^{m} (n-1) - (n-1+2k)$
 $= 2(m-k-1).$

The first inequality is by transversality in S^1 EFT, the first equality is by the index formula in SFT, and the second inequality is because $\mu_{CZ}(\gamma^-) = n+2k-1$ in step 5 by definition of *CH* and $\mu_{CZ}(\gamma_j) \leq n-1$ by choice of Riemannian metric on *L*.

Miguel Pereira (UNIA)

Step 8: energy computation for many disks $\sum_{i=2}^{m} \int_{C_i} d\lambda_i \leq a.$

Proof of step 8.

Step 9: energy computation for one disk $\exists i = 2, ..., m: 0 < \int_{C_i} \leq \frac{a}{k}.$

Proof.

For some
$$i = 2, \ldots, m$$

$$\begin{split} 0 &< \int_{C_i} \mathrm{d}\lambda_i \quad [C_i \text{ is holomorphic}] \\ &\leq \frac{a}{m-1} \quad [\text{step 8} + \text{ in a set some elem. is less than avg.}] \\ &= \frac{a}{k} \quad [\text{by step 7: index computation}]. \end{split}$$

So, C_i is the desired disk of positive, small area.

A conjecture

- 2 The definitions we need
 - Symplectic manifolds and capacities
 - Lagrangian capacity
 - Positive S¹-equivariant symplectic homology
 - Equivariant capacities

3 Tentative proof sketch of the conjecture

4 Consequences of the conjecture

Definition (cube capacity)

Define a symplectic capacity $c_P \colon \mathbf{S} \longrightarrow [0, +\infty]$ as follows. For a symplectic manifold (X, ω) and a > 0, consider the polydisk/cube of the same dimension as X and of radius a:

$$P(a) = \left\{ (z_1, \ldots, z_n) \in \mathbb{C}^n \mid \forall j = 1, \ldots, n \colon \frac{\pi |z_j|^2}{a} \leq 1 \right\}$$

Then, we can define

 $S_P(X) = \{a \in \mathbb{R}^+ \mid \exists \text{ symplectic embedding } P(a) \longrightarrow X\},\ c_P(X, \omega) = \sup S_P$

Lemma (comparison of cube and Lagrangian capacity)

Let (X, ω) be a symplectic manifold. Then, $c_P(X, \omega) \leq c_L(X, \omega)$.

Miguel Pereira (UNIA)

Proof.

Define $S_L(X) = \{A_{\min}(L) \mid L \subset X \text{ is an embedded Lagrangian torus}\}$. We show that $S_P(X) \subset S_L(X)$. It suffices to assume that $a \in S_P(X)$, i.e. that there exists a symplectic embedding $\iota \colon P(a) \longrightarrow X$, and to prove that $a \in S_L(X)$, i.e. that there exists an embedded Lagrangian torus $L \subset X$ such that $a = A_{\min}(L)$. Define

$$T = \{ z \in \mathbb{C}^n \mid |z_1|^2 = a/\pi, \dots, |z_n|^2 = a/\pi \}$$

and $L = \iota(T)$. Then L is a Lagrangian torus and $A_{\min}(L, X) = A_{\min}(T, \mathbb{C}^n) = a$. We now show that $c_P(X, \omega) \leq c_L(X, \omega)$.

$$c_P(X, \omega) = \sup S_P$$
 [definition of c_P]
 $\leq \sup S_L$ [proven above]
 $= c_L(X, \omega)$ [definition of c_L].

Definition (moment map)

The moment map is the map $\mu \colon \mathbb{C}^n \longrightarrow \mathbb{R}^n_{\geq 0}$ given by

$$\mu(z_1,\ldots,z_n)=\pi(|z_1|^2,\ldots,|z_n|^2)$$

Definition (toric domain)

A toric domain is a subset $X \subset \mathbb{C}^n$ of the form $X = \mu^{-1}(\Omega)$ which is a star-shaped domain.

- X is convex if $\hat{\Omega} = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid (|x_1|, \dots, |x_n|) \in \Omega\}$ is convex.
- X is **concave** if $\mathbb{R}_{>0}^n \setminus \Omega$ is convex.

Proposition (consequences of the conjecture)

Let $X = \mu^{-1}(\Omega)$ be a toric domain which is convex or concave. Let $\delta = \max\{a \mid (a, ..., a) \in \Omega\}$. Then,

$$c_P(X) = c_L(X) = \inf_k \frac{c_k(X)}{k} = \lim_{k \to \infty} \frac{c_k(X)}{k} = \delta$$

Proof.

$$\delta = \lim_{k \to \infty} \frac{c_k(X)}{k} = c_P(X)$$

$$\leq c_L(X)$$

$$\leq \inf_k \frac{c_k(X)}{k}$$

$$\leq \lim_{k \to \infty} \frac{c_k(X)}{k}$$

[shown in [GH18]]

[use the previous lemma]

[use the conjecture]

$$[\inf \leq \lim]$$

References

- [CM18] K. Cieliebak and K. Mohnke. Punctured holomorphic curves and lagrangian embeddings. *Invent. Math.*, 212(1):213–295, 2018.
- [GH18] Jean Gutt and Michael Hutchings. Symplectic capacities from positive S¹-equivariant symplectic homology. Algebraic & Geometric Topology, 18(6):3537–3600, October 2018.

Thank you for listening!