Geometric quantization of the cotangent bundle of a Lie group

Miguel Pereira

Universität Augsburg

18-05-2020

Table of Contents

- Geometric quantization
 - Motivation
 - Line bundle
 - Prequantization
 - Polarization
 - Quantization without half forms
 - Quantization with half forms
 - Pairing maps

Original results: quantization of T*G

- Main ideas
- Setup
- Definition of the polarizations
- Results

Table of Contents

- Geometric quantization
 - Motivation
 - Line bundle
 - Prequantization
 - Polarization
 - Quantization without half forms
 - Quantization with half forms
 - Pairing maps
- 2 Original results: quantization of T*G
 - Main ideas
 - Setup
 - Definition of the polarizations
 - Results

Motivation - classical and quantum mechanics

Table: Comparison between classical mechanics and quantum mechanics

	classical mechanics	quantum mechanics
phase space	(M, ω)	\mathcal{H}
observables	$C^{\infty}(M,\mathbb{C})$	$\operatorname{End}(\mathcal{H})$
Lie algebra	$\{\cdot, \cdot\}$	[·,·]

So, Geometric quantization is a procedure that has input a symplectic manifold (M, ω) and has outputs

- a Hilbert space \mathcal{H}
- a map $Q \colon C^{\infty}(M, \mathbb{C}) \longrightarrow \operatorname{End}(\mathcal{H})$

We would like Q to satisfy some axioms coming from physics, the **Dirac axioms**. These are "guidelines" for $(M, \omega) \longrightarrow \mathcal{H}, Q$.

Motivation - quick outline of the construction

Geometric quantization is a construction with 3 steps:

- Prequantization;
- Quantization with polarizations;
- Quantization with polarizations and half forms.

Some ideas to keep in mind:

- Each step produces an \mathcal{H} and Q.
- Each step gives "better" results than the last.
- In each step, we add to M a new piece of geometric data.
- Roughly speaking, $\mathcal{H} <$ space of sections of some complex line bundle on M and for each f, Q(f) = something that maps sections to sections

Line bundle

Definition

A **prequantum line bundle** for (M, ω) is a complex line bundle *L*, with an inner product (\cdot, \cdot) and a connection ∇ which is compatible with (\cdot, \cdot) (i.e. $X(s, r) = (\nabla_X s, r) + (s, \nabla_X r)$) and has curvature $-i\omega$ (i.e. $R(X, Y)s = (\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]})s = -i\omega(X, Y)s$).

Definition

```
(M, \omega) is quantizable if \left[\frac{\omega}{2\pi}\right] \in H^2(M; \mathbb{Z}).
```

Theorem

There exists a prequantum line bundle for (M, ω) if and only if (M, ω) is quantizable. In this case, if M is simply connected, the prequantum line bundle is unique up to isomorphism.

Quantization of T^*G

Prequantization

Definition

The **prequantum Hilbert space** of (M, ω) (dim_R M = 2n) with respect to L is $\mathcal{H}(M; L) := L^2(M \leftarrow L)$. It has the inner product

$$\langle s,r\rangle = \int_M (s,r) \frac{\omega^n}{n!}$$

Definition

The **prequantum map** of (M, ω) with respect to L is the map Q_{pre} that for each $f \in C^{\infty}(M, \mathbb{C})$ associates the unbounded operator $Q_{\text{pre}}(f) = i \nabla_{X_f} + f : \mathcal{H}(M; L) \longrightarrow \mathcal{H}(M; L).$

Polarization

Definition

A **polarization** on M is a distribution P on $TM \otimes \mathbb{C}$ (an assignment that for each $x \in M$ gives a complex vector subspace P_x of $T_x M \otimes \mathbb{C}$) which is

- Lagrangian, i.e., $\dim_{\mathbb{C}} P = \frac{1}{2} \dim_{\mathbb{C}} TM \otimes \mathbb{C} = n$ and for all vectors u, v in $P, \omega(u, v) = 0$;
- Involutive, i.e., if X, Y are vector fields which lie in P, then [X, Y] lies in P as well.

Polarization - types of polarizations

Definition

- Let P be a polarization on M.
 - *P* is **real** if $P = \overline{P}$;
 - **2** *P* is **complex** if $P \cap \overline{P} = \{0\}$;
 - *P* is **Kähler** if $P \cap \overline{P} = \{0\}$ and $\forall x \in M : \forall v \in P_x : \forall w \in \overline{P_x} : -i\omega(v, w) > 0.$

Polarization - what can we say about each type?

- P is real: P = P ⇒ P = (P ∩ TM) ⊗ C. P ∩ TM is an involutive, Lagrangian distribution. By Frobenius' theorem, there exists a foliation of M (partition of M into immersed submanifolds, which are the leaves of the foliation) by Lagrangian leaves L s.t. TL = P ∩ TM.
- P is complex: P Lagrangian, P ∩ P = {0}
 ⇒ TM ⊗ C = P ⊕ P. Define J: P ⊕ P → P ⊕ P by J(v) = iv if v ∈ P and J(v) = -iv if v ∈ P. Then, J is real, i.e. J: TM → TM and J² = -1. Since P is involutive, by the Newlander-Nirenberg theorem, J is integrable. So, M admits the structure of a complex manifold s.t. T_{1,0}M = P.
- **3** *P* is **Kähler**: Same as previous step. In addition, since $-i\omega(P, \overline{P}) > 0$, $\omega(\cdot, J \cdot)$ is a Riemannian metric. So, *M* admits the structure of a **Kähler manifold** s.t. $T_{1,0}M = P$.

Detour: complex/almost complex manifolds

Definition

Let M be a complex manifold (so it has an atlas \mathcal{A} with charts $(U, x^1, \ldots, x^n, y^1, \ldots, y^n)$ s.t. transition functions satisfy the Cauchy-Riemann equations). Define $J^{\mathcal{A}}: TM \longrightarrow TM$ by $J^{\mathcal{A}}(\partial_x) = \partial_y$ and $J^{\mathcal{A}}(\partial_y) = -\partial_x$. (This def. is well posed)

Then, $J^{\mathcal{A}} = -1$.

Definition

An **almost complex manifold** is a pair (M, J) where M is a manifold and $J: TM \longrightarrow TM$ satisfies $J^2 = -1$.

11 / 27

Detour: complex/almost complex manifolds

J: $TM \otimes \mathbb{C} \longrightarrow TM \otimes \mathbb{C}$ has eigenvalues $\pm i$. Define $T_{1,0}M = (+i)$ -eigenspace and $T_{0,1}M = (-i)$ -eigenspace.

Definition

An almost complex structure J on M is **integrable** if there exists a complex manifold structure A on M such that $J = J^A$.

Theorem (Newlander-Nirenberg)

Let (M, J) be an almost complex manifold. J is integrable if and only if $T_{1,0}M$ is involutive.

Quantization without half forms - Hilbert space

Definition

A section s of L is P-polarized if $\forall X \in \mathfrak{X}(\overline{P}) \colon \nabla_X s = 0$.

Definition

Define the **quantum Hilbert space**, denoted $\mathcal{H}(M; L, P)$, as the closure inside $L^2(M \leftarrow L)$ of the set of smooth, square integrable, polarized sections.

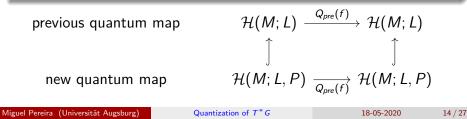
Quantization without half forms - quantum map

Definition

Let $f \in C^{\infty}(M, \mathbb{C})$. f is **quantizable** if $Q_{\text{pre}}(f)$ maps the space of smooth polarized sections to itself.

Definition

The **quantum map** of (M, ω) with respect to L, P is the map Q_{pre} that for each $f \in C^{\infty}(M, \mathbb{C})$ which is quantizable associates the unbounded operator $Q_{\text{pre}}(f) = i\nabla_{X_f} + f : \mathcal{H}(M; L, P) \to \mathcal{H}(M; L, P)$.



Quantization with half forms - new line bundles

Definition

The **canonical bundle** of *P* is the complex line bundle \mathcal{K}_P over *M* $(\dim_{\mathbb{R}} M = 2n)$ whose fibre above $x \in M$ is

$$\mathcal{K}_{P}|_{x} = \Big\{ \alpha \in \bigwedge_{k=1}^{n} T_{x}^{*}M \otimes \mathbb{C} \ \Big| \ \forall v \in \overline{P_{x}} \colon \iota_{v}\alpha = 0 \Big\}.$$

Definition

A square root of \mathcal{K}_P is a pair (δ_P, ϕ_P) , where δ_P is a complex line bundle and $\phi_P \colon \delta_P \otimes \delta_P \longrightarrow \mathcal{K}_P$ is a complex vector bundle iso..

For X in a certain subset of
$$\mathfrak{X}(M)$$
, have
 $L_X: C^{\infty}(M \longleftarrow \mathcal{K}_P) \longrightarrow C^{\infty}(M \longleftarrow \mathcal{K}_P)$ and
 $L_X: C^{\infty}(M \longleftarrow \delta_P) \longrightarrow C^{\infty}(M \longleftarrow \delta_P).$

Quantization with half forms - ${\cal H}$ and Q

If P is Kähler, then the line bundle $L \otimes \delta_{\mathbb{C}}$ admits a canonical Hermitian inner product (\cdot, \cdot) and a canonical (partial) connection ∇ .

Definition

The half form Hilbert space, denoted $\mathcal{H}(M; L, P, \delta_P)$, is the closure inside $L^2(M \leftarrow L \otimes \delta_P)$ of the set of smooth, square integrable, polarized sections.

Definition

The half form quantum map of (M, ω) with respect to L, P, δ_P is the map Q that for each $f \in C^{\infty}(M, \mathbb{C})$ which is quantizable associates the unbounded operator

$$Q(f)(\mu \otimes \nu) = (Q_{\mathrm{pre}}(f)\mu) \otimes \nu + \mu \otimes i \mathcal{L}_{X_f} \nu.$$

Table of Contents

- Geometric quantization
 - Motivation
 - Line bundle
 - Prequantization
 - Polarization
 - Quantization without half forms
 - Quantization with half forms
 - Pairing maps

2 Original results: quantization of T^*G

- Main ideas
- Setup
- Definition of the polarizations
- Results

Main ideas

Joint work with José Mourão and João Nunes, in [MNP19].

Main ideas - setup that we consider

- Let G be a Lie group. Then, T^*G is a symplectic manifold. We are going to apply the previous procedure to T^*G .
- In this case, we can choose L = T^{*}G × C. It remains to choose the polarization.
- We define a family of polarizations, one $P_{\tau,\sigma}$ for each $\tau, \sigma \in \mathbb{C}$.

Main ideas - goals

- Study the polarizations and see what type of geometric structures exist.
- Study the resulting Hilbert spaces.

Setup

Setup - Lie group

Assumption - Lie group

- Let G be a Lie group which is compact and connected.
- Let \mathfrak{g} denote the Lie algebra of G.
- Let $\langle\cdot,\cdot\rangle$ be an $\operatorname{Ad-invariant}$ inner product on $\mathfrak{g}.$

Assumption - torus/algebra

- Let T be a maximal torus in G. So T is an abelian, compact, connected Lie subgroup which is maximal.
- Let t denote the Lie algebra of T, which is a Lie subalgebra of \mathfrak{g} .
- So, t is a maximal abelian subalgebra.

Setup - prequantum line bundle

As we saw, (T^*G, ω) is a symplectic manifold with exact symplectic form, $\omega = d\theta$. The following set of data is a prequantum line bundle for T^*G :

Assumption - prequantum line bundle

Let $(L, (\cdot, \cdot), \nabla)$ be the following prequantum line bundle:

•
$$L = T^*G \times \mathbb{C}$$

•
$$(s,r) = s\overline{r}$$

•
$$\nabla_X s = X(s) - i\theta(X)s$$

Setup

Setup - Lie group actions

Action of $G \times T$ on G

 $G \times T$ acts on G, by

$$(G \times T) \times G \longrightarrow G$$

 $((g, f), h) \longmapsto (g, f)h \coloneqq A_{(g, f)}h \coloneqq ghf^{-1}.$

Action of $G \times T$ on T^*G

The previous action induces an action of $G \times T$ on T^*G , given by

$$\begin{array}{c} (G \times T) \times T^*G \longrightarrow T^*G \\ ((g,t),\alpha) \longmapsto T^*A_{(g^{-1},t^{-1})}\alpha. \end{array}$$

Setup - Hamiltonian functions

Assumption - Hamiltonian functions

Let $f, h: T^*G \longrightarrow \mathbb{R}$ be functions satisfying:

- *h* is $G \times G$ -invariant;
- f is $G \times T$ -invariant;
- Some other assumptions on f and h.

Hamiltonian vector fields

The functions f, h have Hamiltonian vector fields, uniquely determined by $df = \omega(X_f, \cdot)$, $dh = \omega(X_h, \cdot)$.

Hamiltonian flows

Denote by $\phi_{X_h}^t, \phi_{X_f}^s \colon T^*G \longrightarrow T^*G$ the Hamiltonian flows of h, f.

Polarizations - $t, s \in \mathbb{R}$

Vertical polarization

- For each $(g, \alpha) \in T^*G$ (so, $\alpha \in T^*_g G$), consider the map $D\pi(g, \alpha) \colon T_{(g,\alpha)}(T^*G) \longrightarrow T_g G$.
- Define $P_{0,0}|_{(g,\alpha)} = \ker \mathrm{D}\pi(g,\alpha) \otimes \mathbb{C} < T_{(g,\alpha)}(T^*G) \otimes \mathbb{C}$.
- *P* is a polarization, called the **vertical polarization**.

Definition of the family of polarizations for $t, s \in \mathbb{R}$ $P_{t,s}|_{(g,\alpha)} = D(\phi_{X_h}^t \circ \phi_{X_f}^s)|_{(\phi_{X_h}^t \circ \phi_{X_f}^s)^{-1}(g,\alpha)}P_{0,0}|_{(\phi_{X_h}^t \circ \phi_{X_f}^s)^{-1}(g,\alpha)}$

Polarizations - $\tau, \sigma \in \mathbb{C}$

By left translations, $T^*G \cong G \times \mathfrak{g}^*$. Using the inner product of \mathfrak{g} , $\mathfrak{g}^* \cong \mathfrak{g}$. So, $T_{(g,\alpha)}(T^*G) \cong \mathfrak{g} \oplus \mathfrak{g}$.

Computation of $P_{t,s}$

As a subspace of $\mathfrak{g}_{\mathbb{C}} \oplus \mathfrak{g}_{\mathbb{C}}$, for every $x, y \in G \times \mathfrak{g}$,

$$P_{t,s}|_{(x,y)} = \left\{ (T_{t,s}A, A) \mid A \in \mathfrak{g}_{\mathbb{C}} \right\}.$$

where $T_{t,s}$: $\mathfrak{g} \longrightarrow \mathfrak{g}$ is a linear map (with an explicit formula).

Definition of the family of polarizations for $\tau, \sigma \in \mathbb{C}$ Define $P_{\tau,\sigma}|_{(x,y)}$ by replacing $t \longrightarrow \tau$, $s \longrightarrow \sigma$:

$$P_{\tau,\sigma}|_{(x,y)} = \left\{ (T_{\tau,\sigma}A, A) \mid A \in \mathfrak{g}_{\mathbb{C}} \right\},$$

Results - Kähler structures

Theorem ([MNP19])

- **(**) $P_{\tau,\sigma}$ is invariant under the action of $G \times T$ on T^*G .
- So For $\text{Im}\tau$, $\text{Im}\sigma > 0$, $P_{\tau,\sigma}$ is a Kähler polarization. In particular, T^*G has the structure of a Kähler manifold for which $T_{1,0}(T^*G) = P_{\tau,\sigma}$.
- For $\text{Im}\tau$, $\text{Im}\sigma > 0$, T^*G has a global Kähler potential (a function κ s.t. $i\partial\overline{\partial}\kappa = \omega$).
- Solution of $G \times T$ on T^*G is by Kähler isomorphisms.

Results - Hilbert spaces

There exists a canonical linear map $U_{\tau,\sigma}: \mathcal{H}_{0,0} \longrightarrow \mathcal{H}_{\tau,\sigma}$ (not just in our case - in general, not ness. a Unitary iso.). There is a natural action of $G \times T$ on $\mathcal{H}(T^*G; L, P_{\tau,\sigma}, \delta_{P_{\tau,\sigma}})$.

- If Imτ > 0, Imσ > 0, we give an explicit computation of *H*_{τ,σ} = *H*(*T***G*; *L*, *P*_{τ,σ}, δ_{*P*_{τ,σ}}) = (a big expression); (what we have to compute is what are the polarized sections)
- ② If $Im\tau > 0$, $Im\sigma > 0$, $U_{\tau,\sigma}$ is $G \times T$ -equivariant and a linear isomorphism;
- **③** If $\tau = 0$, Im $\sigma > 0$, then $U_{\tau,\sigma}$ is a unitary isomorphism.

Results

References

[MNP19] José M. Mourão, João P. Nunes, and Miguel B. Pereira. Partial coherent state transforms, $G \times T$ -invariant Kähler structures and geometric quantization of cotangent bundles of compact Lie groups. *arXiv:1907.05232* [math-ph], September 2019.

Thank you for listening!