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Definition 1.1

A Liouville domain is a pair (X, ), where X is a compact, con-
nected smooth manifold with boundary X and A € Q!(X) is such
that d\ € Q2(X) is symplectic, A|sx is contact and the orientations
on 9X coming from (X,d\) and coming from A|px are equal.

Definition 1.2

A star-shaped domain is a compact, connected 2n-dimensional
submanifold X of C” with boundary 90X such that (X, \) is a Liou-
ville domain, where

A= ;;(xjdyj —ylax) e QX(C").

Equivalently, the Liouville vector field Z is outward pointing, where

1 .0 .0
= - _ J J
A=1zd = Z 2j§1<x g T 5y1'>'



Definition 1.3
The moment map is the map p: C" — RZ given by

Wz, zn) =7(|z1f% - - |2al?).
Define also
Qx =Q(X) = u(X) C R, for every X C C",
Xa = X(Q) = p Q) cC", for every Q C R,

dg = 6(Q) =sup{a| (a,...,a) € Q}, for every Q C RZ,.

We call 4 the diagonal of €2.

Definition 1.4
A toric domain is a star-shaped domain X such that X = X(Q(X)).
A toric domain X = Xq is
> convex if Q= {(x1,...,x,) €ER" | (|x1],...,|xa|) € Q} is
convex;

» concave if RZ, \ Q is convex.



Example 1.5
The following are toric domains:

E(ai,...,an) = {z eC" jz; ﬂ'; < 1} (ellipsoid)
B(a) ={zeC" Z ”';f <1} (ball)
j=1
Z(a) ={zeC"|n|z]? < a} (cylinder)

P(a):={z€C"|Vj=1,...,n: 7|z]* < a} (cube)
N(a)={z€C"|3j=1,....n 7|z < a}
(nondisjoint union of cylinders)



QB(]-) Qp(l)

Figure: Ball and cube

7/29



Qz(1)

Figure: Cylinder and nondisjoint union of cylinders
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Definition 2.1
A symplectic capacity is a map ¢ which to every symplectic mani-
fold (possibly in a restricted subclass) assigns an element of [0, +o¢],
such that
» (Monotonicity) If (X,wx) — (Y,wy) is a symplectic embed-
ding of codimension 0 (possibly in a restricted subclass) then
c(X,wx) < c(Y,wy);
» (Conformality) If & > 0 then ¢(X, aw) = ac(X,w).

Example 2.2
Let (X,w) be a symplectic manifold. We define the cube capacity
of X by

cp(X,w) == sup{a | 3 symplectic embedding P(a) — X}.



Definition 2.3 ([CM18, Section 1.2])

Let (X,w) be a symplectic manifold. If L is a Lagrangian submani-
fold of X, then we define the minimal symplectic area of L by

Amin(L) == inf{w(o) | o € m2(X, L), w(co) > 0}.

Definition 2.4 ([CM18, Section 1.2])
The Lagrangian capacity of (X,w) is

cL(X) == sup{Amin(L) | L C X is an embedded Lagrangian torus}.

Proposition 2.5 ([CM18, Section 1.2])
The Lagrangian capacity c; satisfies:
» (Monotonicity) If (X,w) — (X',w') is a symplectic embed-
ding with (X', (X)) =0, then ¢ (X, w) < c (X', w').
» (Conformality) If a # 0, then ¢, (X, aw) = |a] cp (X, w).



Lemma 2.6
If X is a star-shaped domain, then c (X) > cp(X).

Proof.
Let ¢: P(a) — X be a symplectic embedding, for some a > 0. We
want to show that ¢;(X) > a. Define

T={zeC"||zal=a/n,...,|z.|> = a/n} C OP(a),
L:=(T)CX.
Then,
c(X) > Amin(L)  [by definition of ¢;]

A
= Amin(T) [since m2(X,(P(a))) = 0]
a [by Stokes’ theorem]. O



Anin(T)

Figure: Proof of c;(X) > cp(X) for X = B(r) C C?



Lemma 2.7
If Xq is a convex or concave toric domain, then cp(Xq) > dq.

Proof.
Since Xq is convex or concave, we have P(dq) C Xq C N(dq).
Y
Q
Qp(s0)
o}

The result follows since cp(Xq) :=sup{a | IP(a) — Xa}.

Theorem 2.8 ([GH18, Theorem 1.18])
If Xq is a convex or concave toric domain, then cp(Xq) = dq.



We now consider the results by Cieliebak—Mohnke for the Lagrangian
capacity of the ball and the cylinder.

Proposition 2.9 ([CM18, Corollary 1.3])
The Lagrangian capacity of the ball is

1

cu(B*'(1)) = = Oa(B2n(1))-

Proposition 2.10 ([CM18, p. 215-216])
The Lagrangian capacity of the cylinder is

ct(Z27(1)) = 1 = dqzan(ry)-



> By Lemmas 2.6 and 2.7, if Xq is a convex or concave toric
domain then ¢, (Xq) > dq.

> But as we have seen in Propositions 2.9 and 2.10, if Xq is the
ball or the cylinder then ¢;(Xq) = dq.

Conjecture 2.11 ([CM18, Conjecture 1.5])
The Lagrangian capacity of the ellipsoid is

1 1\ "
CL(E(ala"'van)) - < ++> :5Q(E(al an))

a an/) YT

Conjecture 2.12 ([Per22, Conjecture 6.24])

If Xq is a convex or concave toric domain then

c(Xa) = dq.
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To prove our results about the Conjecture 2.12, we will need to use
the following symplectic capacities.

McDuff-Siegel capacities @fz [MS22]
Higher symplectic capacities gfz [Sie20]

Gutt-Hutchings capacities ¢l [GH18]

for k,¢ € Z>1. We will only need to consider these capacities for
=1, e ﬁfl,gfl.



Theorem 3.1 ([Per22, Theorem 6.41])

If Xq is a 4-dimensional convex toric domain then c;(Xq) = dq.

Proof.
For every k € Z>1,

0q < cp(Xq) [by Lemma 2.7]
< c(Xa) [by Lemma 2.6]
< ﬁfl(Xg)/k [by [Per22, Theorem 6.40]]
= cH(Xq)/k [dim4 and [MS22, Proposition 5.6.1]]
< cCM(N(3q))/k [Xq is convex, hence Xq C N(8q)]
=dq(k+1)/k [by [GH18, Lemma 1.19]].



Theorem 3.2 ([Per22, Theorem 7.65])

Assume that a suitable virtual perturbation scheme exists. If Xq is
a convex or concave toric domain then ¢, (Xq) = dq.

Proof.
For every k € Z>1,

0q < cp(Xq) [by Lemma 2.7]
< ¢ (Xq) [by Lemma 2.6]
< ﬁfl(Xg)/k [by [Per22, Theorem 6.40]]
< g7 (Xa)/k [by [MS22, Section 3.4]]
= cfM(Xq)/k [by [Per22, Theorem 7.64]]

< cFH(N(6q))/k  [Xq is convex, hence Xq C N(dq)]
=od0qa(k+n—1)/k [by [GH18, Lemma 1.19]]. O
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Let (X, \) be a nondegenerate Liouville domain.

» Choose a point x € int X and a symplectic divisor (germ of a
symplectic submanifold of codimension 2) D C X through x.

» The boundary (0X, A|sx) is a contact manifold and therefore
has a Reeb vector field. Let v be a Reeb orbit.

» The completion of (X, \) is the exact symplectic manifold
(X, ) = (X, A) Uax (Rs0 x 0X, e"X|ox).

> Let M (7)(T®)x) denote the moduli space of J-holomorphic
curves in X which are positively asymptotic to the Reeb orbit
~ and which have contact order k to D at x.



Definition 4.1 ([MS22, Definition 3.3.1])
For k € Z>1 the McDuff-Siegel capacities of X are given by

§1(X) = sup inf A(y),
JeJ(X,D)

where A(7) == [s1 v*A|ox and the infimum is over Reeb orbits ~
such that M (7)(THx) # @.

Theorem 4.2 ([Per22, Theorem 6.40])
If (X, ) is a Liouville domain then

~<1

¢ i (X)

< —_—.
c(X) < |rl1(f p



Proof (1/5).

» Let k € Z>1 and L C int X be an embedded Lagrangian torus.
Denote a := ;" (X). We wish to show that there exists o €
m2(X, L) such that 0 < w(o) < a/k.

» Choose a suitable Riemannian metric on L, such that there
exists a symplectic embedding ¢: D*L — int X with ¢|, =
id;. Choose a point x € int D*L, a symplectic divisor D through
x, and a sequence (J;); of almost complex structures on X
realizing SFT neck stretching along S*L.

» By definition of @El(X) =: a, there exists a Reeb orbit v to-
gether with a sequence (u;): of Ji-holomorphic curves uy €
ME(ANT ) x) with energy E(u;) < a.



Proof (2/5).

X

W
B

T

Figure: The proof so far
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Proof (3/5).

» By the SFT-compactness theorem, the sequence (u:): con-
verges to a broken holomorphic curve F = (F!,... FN), where
each F” is a holomorphic curve. Denote by C the component
of F C T*L which carries the tangency constraint.



Proof (4/5).

Y
D> D3
ANNA A
V1 72 3
—/
¢ D

FPecXxX3=X\L

F2c X2=R x §*L

1 1 _ 7=

Figure: The broken holomorphic curve F in the case N =3



Proof (5/5).

» The choices of almost complex structures J; can be done in
such a way that the simple curve corresponding to C is regular,
i.e. it is an element of a moduli space which is a manifold.

» Using the dimension formula for this moduli space, it is possible
to conclude that C must have at least k 4+ 1 punctures.

» This implies that C gives rise to at least kK > 0 disks Dy, ..., Dy
in X with boundary on L. The total energy of the disks is less
or equal to a. Therefore, one of the disks must have energy
less or equal to a/k. O
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