S¹-equivariant symplectic homology and symplectic capacities

Miguel Pereira¹

¹Universität Augsburg

Korea Institute for Advanced Study, 05-11-2021

Our main theorem

- The definitions we need
 - Symplectic manifolds and capacities
 - Lagrangian capacity
 - Positive S¹-equivariant symplectic homology
 - Gutt-Hutchings capacities
- 3 Consequences of the main theorem
- Proof sketch of the main theorem

Our main theorem

- 2) The definitions we need
 - Symplectic manifolds and capacities
 - Lagrangian capacity
 - Positive S¹-equivariant symplectic homology
 - Gutt-Hutchings capacities
- 3 Consequences of the main theorem
- Proof sketch of the main theorem

Theorem (comparison between c_L and c_k , work in progress) If (X, λ) is a Liouville domain, $\pi_1(X) = \{0\}$ and $c_1(TX)|_{\pi_2(X)} = 0$, then

$$c_L(X,\lambda) \leq \inf_{k\in\mathbb{N}} rac{c_k(X,\lambda)}{k}.$$

Our main theorem

- The definitions we need
 - Symplectic manifolds and capacities
 - Lagrangian capacity
 - Positive S¹-equivariant symplectic homology
 - Gutt-Hutchings capacities
- 3 Consequences of the main theorem
- Proof sketch of the main theorem

Our main theorem

The definitions we need

- Symplectic manifolds and capacities
- Lagrangian capacity
- Positive S¹-equivariant symplectic homology
- Gutt-Hutchings capacities

3 Consequences of the main theorem

Proof sketch of the main theorem

Definition (symplectic manifold)

A symplectic manifold is a pair (M, ω) where M is a smooth manifold and $\omega \in \Omega^2(M)$ is closed and nondegenerate. An exact symplectic manifold is a pair (M, θ) such that $(M, d\theta)$ is a symplectic manifold.

Definition (Liouville domain)

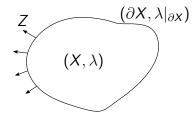
A **Liouville domain** is a pair (X, λ) , where X is a compact, connected smooth manifold with boundary ∂X and $\lambda \in \Omega^1(X)$ is such that $d\lambda \in \Omega^2(X)$ is symplectic, $\lambda|_{\partial X}$ is contact and the orientations on ∂X coming from $(X, d\lambda)$ and coming from $\lambda|_{\partial X}$ are equal.

Definition (Liouville vector field)

If (X, λ) is a Liouville domain, it's **Liouville vector field** is the unique vector field Z such that $\lambda = \iota_Z d\lambda$.

Lemma (Z is outward pointing)

If (X, λ) is a Liouville domain, then Z is outward pointing at ∂X .



Definition (types of morphisms for symplectic manifolds)

Let (X, ω_X) , (Y, ω_Y) be symplectic manifolds (possibly with boundary and corners) and $\varphi: X \longrightarrow Y$ be an embedding. Then, φ is **symplectic** if $\varphi^* \omega_Y = \omega_X$. A **symplectomorphism** is a symplectic embedding which is a diffeomorphism. If (X, λ_X) , (Y, λ_Y) are exact symplectic, then we say that

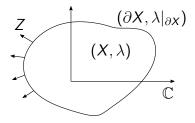
- φ is symplectic if $\varphi^* \lambda_Y \lambda_X$ is closed (\iff to previous def.);
- **2** φ is **exact symplectic** if $\varphi^* \lambda_Y \lambda_X$ is exact;

3
$$\varphi$$
 is **Liouville** if $\varphi^* \lambda_Y - \lambda_X = 0$.

Definition (star-shaped domain)

A star-shaped domain is a compact, connected 2*n*-dimensional submanifold X of \mathbb{C}^n with boundary ∂X such that (X, λ) is a Liouville domain, where

$$\lambda = \frac{1}{2} \sum_{i=1}^{n} \left(y^{i} \mathrm{d} x^{i} - x^{i} \mathrm{d} y^{i} \right).$$



Definition (moment map)

The moment map is the map $\mu \colon \mathbb{C}^n \longrightarrow \mathbb{R}^n_{>0}$ given by

$$\mu(z_1,\ldots,z_n)=\pi(|z_1|^2,\ldots,|z_n|^2)$$

Definition (toric domain)

A toric domain is a star-shaped domain X of the form $X = \mu^{-1}(\Omega)$.

- X is convex if $\hat{\Omega} = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid (|x_1|, \dots, |x_n|) \in \Omega\}$ is convex.
- X is **concave** if $\mathbb{R}^n_{>0} \setminus \Omega$ is convex.

Definition (diagonal of a toric domain)

If $X = \mu^{-1}(\Omega)$ is toric, define $\delta(X) := \max\{a \mid (a, \dots, a) \in \Omega\}$.

Example (toric domains)

• Ellipsoid:

$$E(a_1,\ldots,a_n) = \mu^{-1}(\Omega_E(a_1,\ldots,a_n))$$

$$\Omega_E(a_1,\ldots,a_n) = \left\{ (x_1,\ldots,x_n) \in \mathbb{R}^n_{\geq 0} \ \Big| \ \sum_{j=1}^n \frac{x_j}{a_j} \leq 1 \right\}$$

• **Ball:**
$$B(a) = E(a, ..., a)$$

• Cylinder: $Z(a) = E(a, \infty, \dots, \infty)$

• Cube:

$$egin{aligned} \mathcal{P}(a) &= \mu^{-1}(\Omega_{\mathcal{P}}(a)) \ \Omega_{\mathcal{P}}(a) &= \left\{ (x_1,\ldots,x_n) \in \mathbb{R}^n_{\geq 0} \; \middle| \; \forall j = 1,\ldots,n \colon rac{x_j}{a} \leq 1
ight\} \end{aligned}$$

Definition (symplectic capacity)

A domain for a symplectic capacity is a subcategory **D** of the category of symplectic manifolds such that $(M, \omega) \in \mathbf{D}$ implies $(M, \alpha \omega) \in \mathbf{D}$ for all $\alpha \in \mathbb{R} \setminus \{0\}$. A symplectic capacity is a map $c : \mathbf{D} \longrightarrow [0, +\infty]$, such that

(Monotonicity) c is a functor, i.e. if $(M, \omega_M) \longrightarrow (N, \omega_N)$ is a morphism in **D** then $c(M, \omega_M) \le c(N, \omega_N)$.

(Conformality) For every $\alpha \in \mathbb{R} \setminus \{0\}$ and $(M, \omega) \in \mathbf{D}$ we have that $c(M, \alpha \omega) = |\alpha| c(M, \omega)$.

If $B(1), Z(1) \in \mathbf{D}$, then c is **nontrivial** or **normalized** if (resp.): (Nontriviality) $0 < c(B(1)) \le c(Z(1)) < +\infty$. (Normalization) $0 < c(B(1)) = 1 = c(Z(1)) < +\infty$.

Our main theorem

The definitions we need

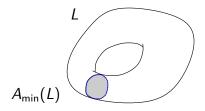
- Symplectic manifolds and capacities
- Lagrangian capacity
- Positive S¹-equivariant symplectic homology
- Gutt-Hutchings capacities

3 Consequences of the main theorem

Proof sketch of the main theorem

Definition (minimal symplectic area of a Lagrangian submanifold) Let (X, ω) be a symplectic manifold. If *L* is a Lagrangian submanifold of *X*, then we define the **minimal symplectic area of** *L*, $A_{\min}(L)$, by

$$\begin{aligned} A_{\min}(L) &\coloneqq \inf \left\{ \omega(\sigma) \mid \sigma \in \pi_2(X,L), \ \omega(\sigma) > 0 \right\} \\ &= \inf \left\{ \int_D u^* \omega \mid u \colon (D,\partial D) \longrightarrow (X,L), \ \int_D u^* \omega > 0 \right\} \\ &\in [0,\infty]. \end{aligned}$$



Definition (Lagrangian capacity)

We define the Lagrangian capacity of (X, ω) , $c_L(X, \omega)$, by

 $c_L(X,\omega) \coloneqq \sup\{A_{\min}(L) \mid L \subset X \text{ embedded Lagrangian torus}\} \in [0,\infty].$

Proposition (Properties of the Lagrangian capacity)

The Lagrangian capacity c_L satisfies: (Monotonicity) If $\iota: (X, \omega) \longrightarrow (X', \omega')$ is a symplectic embedding s.t. $\pi_2(X', \iota(X)) = 0$, then $c_L(X, \omega) \le c_L(X', \omega')$. (Conformality) For all $\alpha \in \mathbb{R} \setminus \{0\}$, $c_L(X, \alpha \omega) = |\alpha| c_L(X, \omega)$.

Definition (cube capacity)

We define the **cube capacity of** (X, ω) , $c_P(X, \omega)$, by

 $c_P(X,\omega) = \sup\{a \in \mathbb{R}_{>0} \mid \exists \text{ symplectic embedding } P(a) \longrightarrow X\}.$

Lemma (comparison of cube and Lagrangian capacity)

Let (X, ω) be a symplectic manifold. Then, $c_L(X, \omega) \ge c_P(X, \omega)$.

Proof.

Since

$$\begin{split} c_L(X,\omega) &= \sup\{A_{\min}(L) \mid L \subset X \text{ embedded Lagrangian torus}\},\\ c_P(X,\omega) &= \sup\{a \in \mathbb{R}_{>0} \mid \exists \text{ symplectic embedding } P(a) \longrightarrow X\}. \end{split}$$

it suffices to assume that $a \in \mathbb{R}_{>0}$ is such that there exists a symplectic embedding $P(a) \longrightarrow X$ and to prove that there exists an embedded Lagrangian torus $L \subset X$ such that $a = A_{\min}(L)$. Define

$$T = \{ z \in \mathbb{C}^n \mid |z_1|^2 = a/\pi, \dots, |z_n|^2 = a/\pi \}$$

and $L = \iota(T)$. Then L is as desired.

Lemma (comparison of cube capacity and δ)

If X is a convex or concave toric domain, then $c_P(X) \ge \delta(X)$.

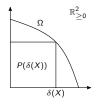
Proof.

X is a convex or concave toric domain

$$\implies P(\delta(X)) \subset X$$

$$\implies \delta(X) \in \{a \in \mathbb{R}_{>0} \mid \exists \text{ symplectic embedding } P(a) \to X\}$$

$$\implies \delta(X) \le c_P(X).$$



Proposition (Lagrangian capacity of the ball, [CM18]) $c_L(B(1)) = 1/n.$

Proof.

$$(\geq): c_L(B(1)) \geq c_P(B(1)) \geq \delta(B(1)) = 1/n.$$

 (\leq) : This is hard. Uses the main theorem of [CM18], which says that there are disks with boundary on a Lagrangian of small area, and it's proof uses holomorphic curve techniques.

Proposition (Lagrangian capacity of the cylinder, [CM18]) $c_L(Z(1)) = 1.$

Proof.

$$(\geq): c_L(Z(1)) \ge c_P(Z(1)) \ge \delta(Z(1)) = 1.$$

 (\leq) : I his is hard. Uses the concepts of Hofer norm, Hofer energy, displacement energy, and a result of Chekanov comparing A_{\min} and displacement energy. See [CM18, HZ11, Che98].

21/41

Remark (motivation for conjecture)

Let X be a convex or concave toric domain. We have proven that $c_L(X) \ge \delta(X)$. For the ball and the cylinder, [CM18] have proven that $c_L(X) = \delta(X)$. This motivates the conjecture below.

Conjecture (Lagrangian capacity of ellipsoid, [CM18]) Let $E(a_1, ..., a_n) \subset \mathbb{C}^n$ be an ellipsoid. Then,

$$c_L(E(a_1,\ldots,a_n)) = \delta(E(a_1,\ldots,a_n)) = \left(\frac{1}{a_1}+\cdots+\frac{1}{a_n}\right)^{-1}$$

Remark (main theorem \implies conjecture)

Using our main theorem, we will actually show that $c_L(X) = \delta(X)$ for any convex or concave toric domain (in the section about consequences of the main theorem).

Our main theorem

The definitions we need

- Symplectic manifolds and capacities
- Lagrangian capacity
- Positive S^1 -equivariant symplectic homology
- Gutt-Hutchings capacities
- 3 Consequences of the main theorem
- Proof sketch of the main theorem

Let (X, λ) be a nondegenerate Liouville domain.

Definition (completion)

The **completion** of (X, λ) is an exact symplectic manifold $(\hat{X}, \hat{\lambda})$ given as follows. As a manifold, $\hat{X} = X \cup_{\partial X} \mathbb{R}_{\geq 0} \times \partial X$ (where we glue with the flow of the Liouville vector field). The form $\hat{\lambda}$ is given by

$$\hat{\lambda}|_{\mathcal{X}} = \lambda$$

 $\hat{\lambda}|_{\mathbb{R}_{\geq 0} imes \partial \mathcal{X}} = e^r \lambda|_{\partial \mathcal{X}}$

Consider a "suitable" function $\hat{f}_q \colon S^{2q+1} \longrightarrow \mathbb{R}$.

Definition (Positive S^1 -equivariant Floer complex)

- The PS¹EFC of (X, λ) w.r.t. $H: S^1 \times S^{2q+1} \times \hat{X} \longrightarrow \mathbb{R}$ and an almost complex structure $J: S^1 \times S^{2q+1} \times \hat{X} \longrightarrow \text{End}(T\hat{X})$ is a chain complex of \mathbb{Q} -modules denoted by $FC^+(X, \lambda, H, J)$.
- $FC^+(X, \lambda, H, J)$ is generated by $(S^1$ -eq. classes of) tuples $\gamma = (z, \gamma)$, where $z \in S^{2q+1}$ is a critical point of \hat{f}_q and γ is a 1-periodic orbit of H_z .
- The differential of FC⁺(X, λ, H, J) counts (S¹-eq. classes of) Floer trajectories u = (w, u), where w: ℝ → S^{2q+1} is a gradient flow line of f̂_q and u: ℝ × S¹ → X̂ is a sol. of the Floer eq.

$$\frac{\partial u}{\partial s} = -J(t, w, u) \Big(\frac{\partial u}{\partial t} - X_H(t, w, u) \Big).$$

Definition (Positive S^1 -equivariant Floer homology) $FH^+(X, \lambda, H, J) = H(FC^+(X, \lambda, H, J)).$

Definition (Positive S¹-equivariant symplectic homology) $CH(X, \lambda) = \varinjlim_{H,J} FH^+(X, \lambda, H, J).$

Remark (Properties of $CH(X, \lambda)$)

- Action filtration: $\iota^a : CH^a(X, \lambda) \longrightarrow CH(X, \lambda);$
- Viterbo transfer maps: if φ: (X, λ_X) → (Y, λ_Y) is an exact symplectic embedding, there exists a corresponding Viterbo transfer map φ_!: CH(Y, λ_Y) → CH(X, λ_X).

Our main theorem

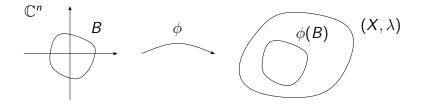
The definitions we need

- Symplectic manifolds and capacities
- Lagrangian capacity
- Positive S¹-equivariant symplectic homology
- Gutt-Hutchings capacities
- 3 Consequences of the main theorem
- Proof sketch of the main theorem

Definition (Gutt-Hutchings capacity)

Let (X, λ) be a Liouville domain (nondegenerate, satisfying the same topological assumptions) and $k \in \mathbb{N}$. The *k*th Gutt-Hutchings capacity of (X, λ) , denoted $c_k(X, \lambda)$, is given as follows. Choose $B \subset \mathbb{C}^n$ a nondegenerate star-shaped domain and $\phi: B \longrightarrow X$ an exact symplectic embedding. Then, $c_k(X, \lambda)$ is the infimum over a > 0 such that the following map is surjective:

$$\mathcal{CH}^{a}_{n+2k-1}(X,\lambda) \xrightarrow{\iota^{a}} \mathcal{CH}_{n+2k-1}(X,\lambda) \xrightarrow{\phi_{l}} \mathcal{CH}_{n+2k-1}(B,\lambda_{0})$$



(

Remark (standard vs alternative definition of c_k)

Actually, the definition we gave of c_k is an alternative definition. The standard definition was given in [GH18].

- Standard definition ([GH18]): relies on additional properties of positive S¹-equivariant symplectic homology (which we did not mention), namely maps U and δ. This definition doesn't rely on choosing B.
- Alternative definition: it's possible to prove that the definition we gave and the one given in [GH18] are equivalent. Our definition doesn't depend on the maps U or δ, but depends on choosing B. We will only need the alternative definition to understand the proof of the main theorem.

Our main theorem

- 2 The definitions we need
 - Symplectic manifolds and capacities
 - Lagrangian capacity
 - Positive S¹-equivariant symplectic homology
 - Gutt-Hutchings capacities

3 Consequences of the main theorem

Proof sketch of the main theorem

30 / 41

Proposition (consequences of the main theorem)

If $X = \mu^{-1}(\Omega)$ is a convex or concave toric domain,

$$c_P(X) = c_L(X) = \inf_k \frac{c_k(X)}{k} = \lim_{k \to \infty} \frac{c_k(X)}{k} = \delta(X).$$

Proof.

$$\delta(X) = \lim_{k \to \infty} \frac{c_k(X)}{k} = c_P(X) \qquad \text{[shown in [GH18]]} \\ \leq c_L(X) \qquad \text{[use a previous lemma]} \\ \leq \inf_k \frac{c_k(X)}{k} \qquad \text{[use the main theorem]} \\ \leq \lim_{k \to \infty} \frac{c_k(X)}{k} \qquad \text{[inf \leq lim]}.$$

Our main theorem

- 2 The definitions we need
 - Symplectic manifolds and capacities
 - Lagrangian capacity
 - Positive S¹-equivariant symplectic homology
 - Gutt-Hutchings capacities

3 Consequences of the main theorem

Proof sketch of the main theorem

We now present what hopefully will be the proof of the main theorem (we present a version of the proof with some imprecisions to make the discussion simpler, but the key ideas are here).

Step 1/8: what we need to assume and prove

It suffices to assume that

- (X, λ) is a ndg. Liouville domain, $\pi_1(X) = 0$, $c_1(TX)|_{\pi_2(X)} = 0$
- $k \in \mathbb{N}$
- $L \subset \operatorname{int} X$ is an embedded Lagrangian torus
- $a > c_k(X, \lambda)$

and to prove that there exists $\sigma \in \pi_2(X, L)$ s.t. $0 < \omega(\sigma) \le a/k$.

Proof of step 1. By definition of c_l .

Step 2/8: constructing a tubular neighbourhood

There exists g a Riemannian metric on L, $W \subset \operatorname{int} X$ a closed set containing L and a symplectomorphism $\psi \colon W \longrightarrow D^*L$ and such that for every closed geodesic γ of L, if $I(\gamma) \leq a$ then γ is noncontractible and nondegenerate and $0 \leq \operatorname{ind}_{M}(\gamma) \leq n-1$.

Proof of step 2.

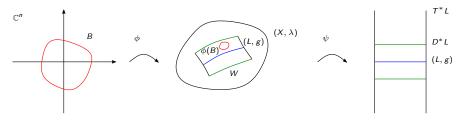
By the Lagrangian neighbourhood theorem plus a lemma from [CM18] which says that metrics of nonpositive sectional curvature (for example the flat metric on the torus) can be perturbed to have the desired property.

Step 3/8: choosing a small ball inside W

There exists $B \subset \mathbb{C}^n$ a nondegenerate star-shaped domain and $\phi: B \longrightarrow X$ an exact symplectic embedding such that $\phi(B) \subset \operatorname{int} W$ and the following map is surjective:

$$CH^{\mathfrak{s}}_{n+2k-1}(X,\lambda) \stackrel{\iota^{\mathfrak{s}}}{\longrightarrow} CH_{n+2k-1}(X) \stackrel{\phi_{\mathfrak{l}}}{\longrightarrow} CH_{n+2k-1}(B,\lambda_0)$$

Proof of step 3. By definition of $c_k(X)$ and because $c_k(X) < a$. So, until now we have the following:



Remark (Next steps)

Recall that we wish to show that there exists a disk with boundary on L and of small area. To accomplish that, we will

- Create a special sequence of Floer trajectories;
- Take the limit of those Floer trajectories, which is a "Floer trajectory" which is "broken" into many components;
- One of those components is the disk we want.

Step 4/8: choosing auxiliary data

Choose *H* a Hamiltonian and *J* an almost complex structure on \hat{X} . Do a construction from SFT (**symplectic field theory**) called **neck stretching**, which produces a sequence of a.c.s. $(J_m)_{m\in\mathbb{N}}$ on \hat{X} .

Step 5/8: applying the definition of CH

For every $m \in \mathbb{N}$ there exist generators γ_m^{\pm} of $FC^+(X, H, J_m)$ and a Floer trajectory \mathbf{u}_m from γ_m^+ to γ_m^- such that γ_m^+ is near ∂X , γ_m^- is near ∂B , $\mathcal{A}_H(\gamma_m^+) \leq a$ and $\mu(\gamma_m^-) \geq n + 2k - 1$.

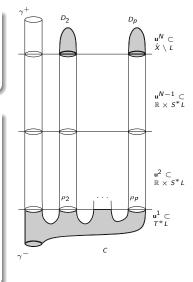
Proof of step 5.

By definition of *CH* and of Viterbo transfer map, and the fact that $CH^a_{n+2k-1}(X,\lambda) \longrightarrow CH_{n+2k-1}(B,\lambda_0)$ is surjective. \Box

Step 6/8: applying SFT compactness There exists a **broken punctured sphere** $\mathbf{u} = (\mathbf{u}^1, \dots, \mathbf{u}^N)$ with $N \ge 2$ levels like the one drawn in the figure.

Proof of step 6.

There is a uniform energy bound $E(\mathbf{u}_m) \leq a$. The b.p.s. \mathbf{u} is the limit of \mathbf{u}_m as $m \to +\infty$. The limit exists by applying a modification of the **SFT compact-ness theorem**. We also need to do some broken holomorphic curve analysis to restrict the possibilities of limits that we obtain.



Step 7/8: index computation $p-1 \ge k$.

Proof of step 7. $0 \le \operatorname{ind}(C)$ $= (n-3)(1-p) + \sum_{j=1}^{p} \mu_{CZ}(\rho_j) - \mu(\gamma^-)$ $\le (n-3)(1-p) + \sum_{j=1}^{p} (n-1) - (n-1+2k)$ = 2(p-k-1).

The first inequality is by transversality in S^1 EFT, the first equality is by the index formula in S^1 EFT, and the second inequality is because $\mu(\gamma^-) = n + 2k - 1$ in step 5 by definition of *CH* and $\mu_{CZ}(\rho_j) \le n - 1$ by choice of Riemannian metric on *L*.

Step 8/8: energy computation $\exists i \in \{2, ..., p\}: 0 < E(D_i) \le a/k.$

Proof.

By definition of average, there exists $i \in \{2, ..., p\}$ such that

$$egin{aligned} E(D_i) &\leq rac{E(D_2) + \dots + E(D_p)}{p-1} & [ext{by definition of average}] \ &= rac{E(D_2 \cup \dots \cup D_p)}{p-1} & [ext{energy is additive}] \ &\leq rac{a}{p-1} & [ext{by the uniform energy bound}] \ &\leq rac{a}{k} & [ext{by the index computation}]. & \Box \end{aligned}$$

So, D_i is the desired disk of positive, small area.

Miguel Pereira (UNIA)

References

- [Che98] Yu. V. Chekanov. Lagrangian intersections, symplectic energy, and areas of holomorphic curves. *Duke Math. J.*, 95(1):213– 226, 10 1998.
- [CM18] K. Cieliebak and K. Mohnke. Punctured holomorphic curves and lagrangian embeddings. *Invent. Math.*, 212(1):213–295, 2018.
- [GH18] Jean Gutt and Michael Hutchings. Symplectic capacities from positive S¹-equivariant symplectic homology. Algebraic & Geometric Topology, 18(6):3537–3600, October 2018.
- [HZ11] Helmut Hofer and Eduard Zehnder. *Symplectic Invariants and Hamiltonian Dynamics*. Springer Basel, Basel, 2011.

Thank you for listening!

Miguel Pereira (UNIA)

Symplectic capacities