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Theorem (comparison between ¢; and ¢, work in progress)

If (X, ) is a Liouville domain, m1(X) = {0} and c¢i(TX)|rx) = 0,
then

(X, \) < inf C"()lfA)

keN
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Definition (symplectic manifold)

A symplectic manifold is a pair (M, w) where M is a smooth manifold
and w € Q?(M) is closed and nondegenerate. An exact symplectic
manifold is a pair (M, ) such that (M, d6) is a symplectic manifold.

Definition (Liouville domain)

A Liouville domain is a pair (X, ), where X is a compact, con-
nected smooth manifold with boundary X and X\ € Q!(X) is such
that d\ € Q3(X) is symplectic, A|sx is contact and the orientations
on 0X coming from (X,d\) and coming from A|gx are equal.
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Definition (Liouville vector field)

If (X, \) is a Liouville domain, it's Liouville vector field is the unique
vector field Z such that A = ¢zd\.

v

Lemma (Z is outward pointing)

If (X, \) is a Liouville domain, then Z is outward pointing at 0X.

5 (X, Mox)
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Definition (types of morphisms for symplectic manifolds)

Let (X, wx), (Y,wy) be symplectic manifolds (possibly with boundary
and corners) and ¢: X — Y be an embedding. Then, ¢ is symplec-
tic if o*wy = wx. A symplectomorphism is a symplectic embedding
which is a diffeomorphism. If (X, Ax), (Y, Ay) are exact symplectic,
then we say that

@ ¢ is symplectic if p*\y — A\x is closed (<= to previous def.);

@ ¢ is exact symplectic if p*\y — Ax is exact;

@ ¢ is Liouville if p*Ay — Ax =0.
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Definition (star-shaped domain)

A star-shaped domain is a compact, connected 2n-dimensional sub-
manifold X of C" with boundary 0X such that (X, \) is a Liouville
domain, where

; (yidxi — xidyi).

i=1

A\ =

N~

(90X, Mox)
(X, 2)
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Definition (moment map)

The moment map is the map p: C" — RZ, given by

wzi,....z0) =7(|z%, ..., |za%)

Definition (toric domain)

A toric domain is a star-shaped domain X of the form X = u=1(Q).

o Xis convex if 0 ={(xi,....x,) €R" | (|xa],-..,|xa|) € Q) is
convex.

e X is concave if RZ, \ Q is convex.

Definition (diagonal of a toric domain)
If X = p~1(Q) is toric, define §(X) :=max{a | (a,...,a) € Q}.
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Example (toric domains)
o Ellipsoid:

E(ay,...,an) = pu Y(Qe(a, ..., an))
QE(al,...,a,,):{(xl,...,x,,)ERgo ZXJSI}
B j=19%
e Ball: B(a) = E(a,...,a)
e Cylinder: Z(a) = E(a, 00,...,00)
@ Cube:
P(a) = u(Qp(a))
Qp(a) = {(Xl,...,x,,) eRY, |Vji=1,.. nY< 1}
= a
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Definition (symplectic capacity)

A domain for a symplectic capacity is a subcategory D of the

category of symplectic manifolds such that (M,w) € D implies

(M,aw) € D for all @« € R\ {0}. A symplectic capacity is a

map c: D — [0, +00], such that

(Monotonicity) c is a functor, i.e. if (M,wy) — (N,wy) is a mor-
phism in D then c¢(M,wp) < c(N,wp).

(Conformality) For every o € R\ {0} and (M,w) € D we have that
c(M, aw) = |a|c(M,w).

If B(1),Z(1) € D, then c is nontrivial or normalized if (resp.):

(Nontriviality) 0 < ¢(B(1)) < ¢(Z(1)) < +o0.

(Normalization) 0 < ¢(B(1)) =1 = ¢(Z(1)) < +oc.
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Definition (minimal symplectic area of a Lagrangian submanifold)

Let (X,w) be a symplectic manifold. If L is a Lagrangian submanifold
of X, then we define the minimal symplectic area of L, A,,;,(L), by

Amin(L) = inf{w(o) | 0 € m(X, L), w(c) > 0}
= inf{/D u'w | u: (D,0D) — (X, L), /Du*w > 0}
€ [0, oa]. )
L
Amin(L)

KIAS 2021 15 /41
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Definition (Lagrangian capacity)
We define the Lagrangian capacity of (X,w), ¢, (X,w), by

c(X,w) == sup{Amin(L) | L C X embedded Lagrangian torus}
€ [0, a].

Proposition (Properties of the Lagrangian capacity)

The Lagrangian capacity c, satisfies:

(Monotonicity) If v: (X,w) — (X', w') is a symplectic embedding
s.t. m( X', (X)) =0, then ¢, (X, w) < cr (X', w').

(Conformality) For all a« € R\{0}, c.(X, aw) = |a|c (X, w).
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Definition (cube capacity)
We define the cube capacity of (X,w), cp(X,w), by

cp(X,w) = sup{a € R | 3 symplectic embedding P(a) — X}.
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Lemma (comparison of cube and Lagrangian capacity)

Let (X,w) be a symplectic manifold. Then, ¢ (X,w) > cp(X,w).

Proof.
Since

c(X,w) = sup{Anin(L) | L C X embedded Lagrangian torus},
cp(X,w) = sup{a € R.q | 3 symplectic embedding P(a) — X},

it suffices to assume that a € R is such that there exists a symplectic
embedding P(a) — X and to prove that there exists an embedded
Lagrangian torus L C X such that a = Ap,(L). Define

T={zcC"||zn]*=a/n,...,|z.)* = a/7}

and L =(T). Then L is as desired. O
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Lemma (comparison of cube capacity and ¢)

If X is a convex or concave toric domain, then cp(X) > §(X).

Proof.

X is a convex or concave toric domain
= P(6(X)) c X
— §(X) € {a € Ry | 3 symplectic embedding P(a) — X}
— §(X) < cp(X). ]

v

2
R,

P(5(X))

5(X)
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Proposition (Lagrangian capacity of the ball, [CM18])
c(B(1)) =1/n.

Proof.

(2): a(B() = cp(B(1)) = 6(B)) = 1/n.

(<) : This is hard. Uses the main theorem of [C)18], which says that
there are disks with boundary on a Lagrangian of small area, and it's
proof uses holomorphic curve techniques. O

v
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Proposition (Lagrangian capacity of the cylinder, [CM18])
a(Z(1)) =1.

Proof.

(2): a(2(1)) = cp(2(1)) = 6(2(1)) = L.

(<) : This is hard. Uses the concepts of Hofer norm, Hofer energy,
displacement energy, and a result of Chekanov comparing A, and
displacement energy. See [CM18, HZ11, Che98]. ]

v
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Remark (motivation for conjecture)
Let X be a convex or concave toric domain. We have proven that

c(X) > 0(X). For the ball and the cylinder, [C\M18] have proven that
c(X) = d(X). This motivates the conjecture below.

o

Conjecture (Lagrangian capacity of ellipsoid, [CM18])
Let E(a,...,a,) C C" be an ellipsoid. Then,

@ (Ear, . a)) = 6(E(ar, ... a,)) = <a11 4o ;) o

Remark (main theorem == conjecture)

Using our main theorem, we will actually show that ¢, (X) = §(X) for
any convex or concave toric domain (in the section about consequences
of the main theorem).

v
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Let (X, \) be a nondegenerate Liouville domain.

Definition (completion)
The completion of (X, \) is an exact symplectic manifold (X, X) given
as follows. As a manifold, X = X Upx R>g X 8XA(Where we glue with
the flow of the Liouville vector field). The form A is given by

Ax = A

Alrooxax = € Max.
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Consider a “suitable” function zA‘q: S2a+tl 4 R,

Definition (Positive S'-equivariant Floer complex)

@ The PS'EFC of (X, \) w.rt. H: §' x §%9*1 x X — R and an
almost complex structure J: S! x §291 x X — End(TX) is a
chain complex of Q-modules denoted by FC* (X, \, H, J).

e FCT(X,\ H,J) is generated by (S'-eq. classes of) tuples v =
(z,7), where z € §29t! is a critical point of #, and v is a 1-
periodic orbit of H,.

e The differential of FCT(X, ), H,J) counts (S'-eq. classes of)
Floer trajectories u = (w, u), where w: R — 529! is a gradient
flow line of £, and u: R x S' — X is a sol. of the Floer eq.

du du
a = —J(f:7 w, U) (8t — )([-[(t7 w, U))
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Definition (Positive S'-equivariant Floer homology)
FHY(X,\,H,J) = H(FC*(X,\, H,J)).

Definition (Positive S'-equivariant symplectic homology)
CH(X, \) = lim,, | FH* (X, \, H, J).

Remark (Properties of CH(X, \))
@ Action filtration: ¢?: CH*(X,\) — CH(X, \);
@ Viterbo transfer maps: if ¢: (X, Ax) — (Y, Ay) is an exact

symplectic embedding, there exists a corresponding Viterbo
transfer map ¢,: CH(Y,\y) — CH(X, Ax).

Miguel Pereira (UNIA) Symplectic capacities KIAS 2021
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Definition (Gutt-Hutchings capacity)

Let (X, A) be a Liouville domain (nondegenerate, satisfying the same
topological assumptions) and k € N. The kth Gutt-Hutchings ca-
pacity of (X, \), denoted ¢, (X, \), is given as follows. Choose B C C"
a nondegenerate star-shaped domain and ¢: B — X an exact sym-
plectic embedding. Then, ¢ (X, \) is the infimum over a > 0 such
that the following map is surjective:

CHZ o1 (X, \) —5— CHoyoi1(X, ) 4, CHpy21-1(B, o)

(X, )

Mlguel Perelra (UNIA) Symplectic capacities KIAS 2021 28 /41



Remark (standard vs alternative definition of c)

Actually, the definition we gave of ¢, is an alternative definition. The
standard definition was given in [ ]
e Standard definition (] ]): relies on additional properties of
positive S'-equivariant symplectic homology (which we did not
mention), namely maps U and 0. This definition doesn't rely on

choosing B.
o Alternative definition: it's possible to prove that the definition
we gave and the one given in [ | are equivalent. Our definition

doesn't depend on the maps U or 9, but depends on choosing B.
We will only need the alternative definition to understand the
proof of the main theorem.
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Proposition (consequences of the main theorem)

If X = n=Y(Q) is a convex or concave toric domain,
a(X) o a(X)
cp(X) = a(X) = |rl1<f P k||_)n;o P 5(X). |
Proof.
5(X) = lim Ckix) = cp(X) [shown in [GH18]]
—00
< ¢ (X) [use a previous lemmal]
< ir)(f CkS(X) [use the main theorem]
X
< gim X e < liml, 0
k—o00 k
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We now present what hopefully will be the proof of the main theorem
(we present a version of the proof with some imprecisions to make the
discussion simpler, but the key ideas are here).

Step 1/8: what we need to assume and prove
It suffices to assume that
@ (X, ) is a ndg. Liouville domain, 71(X) =0, c;(TX)|nrx) =0
e keN
e L Cint X is an embedded Lagrangian torus
° a> (X, )
and to prove that there exists o € m(X, L) s.t. 0 < w(o) < a/k.

Proof of step 1.
By definition of ¢;. O
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Step 2/8: constructing a tubular neighbourhood

There exists g a Riemannian metric on L, W C int X a closed set
containing L and a symplectomorphism v¢: W — D*L and such that
for every closed geodesic 7y of L, if /() < a then ~y is noncontractible
and nondegenerate and 0 < indy(y) < n—1.

Proof of step 2.

By the Lagrangian neighbourhood theorem plus a lemma from | ]
which says that metrics of nonpositive sectional curvature (for example
the flat metric on the torus) can be perturbed to have the desired
property. []

v
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Step 3/8: choosing a small ball inside W

There exists B C C" a nondegenerate star-shaped domain and
¢: B — X an exact symplectic embedding such that ¢(B) C int W
and the following map is surjective:

CHp a1 (X, A) T CHpi2k-1(X) P, CHpyok-1(B, o)

Proof of step 3.
By definition of cx(X) and because ¢ (X) < a. O
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So, until now we have the following:

X, A

™~ M( L

\ N " T\ (L, g)
L/ "

cn

Remark (Next steps)
Recall that we wish to show that there exists a disk with boundary on
L and of small area. To accomplish that, we will

o Create a special sequence of Floer trajectories;

@ Take the limit of those Floer trajectories, which is a “Floer
trajectory” which is “broken” into many components;

@ One of those components is the disk we want.
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Step 4/8: choosing auxiliary data

Choose H a Hamiltonian and J an almost complex structure on X.
Do a construction from SFT (symplectic field theory) called neck
stretching, which produces a sequence of a.c.s. (Jn)men on X.

o

Step 5/8: applying the definition of CH

For every m € N there exist generators v of FC*(X, H, J,,) and a
Floer trajectory u,, from 4 to «; such that «; is near 90X, v, is
near 0B, Ay(~}) < aand p(vy,,) > n+ 2k — 1.

Proof of step 5.

By definition of CH and of Viterbo transfer map, and the fact that
CHY ok 1(X; A) — CHpyak-1(B; Ao) is surjective. O

v
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Step 6/8: applying SFT compactness T— b oy
There exists a broken punctured sphere g
u = (ul,...,u") with N > 2 levels like
the one drawn in the figure.

H
Proof of step 6.
There is a uniform energy bound E(u,,) <
a. The b.p.s. u is the limit of u, as
m — 4o00. The limit exists by apply- S
ing a modification of the SFT compact- 2 IR
ness theorem. We also need to do some v.C
broken holomorphic curve analysis to re-
strict the possibilities of limits that we ob-| -~ ‘
tain. 0

Miguel Pereira (UNIA) Symplectic capacities KIAS 2021 38 /41



Step 7/8: index computation
p—12>k.

Proof of step 7.

0 <ind(C)
=(n-3)1-p)+ ;ucz(pj) —p(y7)
§(n—3)(1—p)+zp:(n—1)—(n—1+2k)
o k-1)

The first inequality is by transversality in S'EFT, the first equality is
by the index formula in S'EFT, and the second inequality is because
p(y~) = n+2k —1 in step 5 by definition of CH and picz(p;) < n—1
by choice of Riemannian metric on L. O]

v
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Step 8/8: energy computation
die{2,...,p}: 0< E(D;) < a/k.

Proof.
By definition of average, there exists i € {2,...,p} such that

E(Dz) + -+ E(Dp)

E(D;) < 1 [by definition of average]
p —
E(D,U---UD
_E(D V- U D) [energy is additive]
p—1
< 2 1 [by the uniform energy bound]
p J—
< Z [by the index computation]. O
So, D; is the desired disk of positive, small area. ]
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