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Our main theorem

Theorem (comparison between cL and ck , work in progress)

If (X , λ) is a Liouville domain, π1(X ) = {0} and c1(TX )|π2(X) = 0,
then

cL(X , λ) ≤ inf
k∈N

ck(X , λ)
k .
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The definitions we need Symplectic manifolds and capacities

Definition (symplectic manifold)

A symplectic manifold is a pair (M, ω) where M is a smooth manifold
and ω ∈ Ω2(M) is closed and nondegenerate. An exact symplectic
manifold is a pair (M, θ) such that (M, dθ) is a symplectic manifold.

Definition (Liouville domain)
A Liouville domain is a pair (X , λ), where X is a compact, con-
nected smooth manifold with boundary ∂X and λ ∈ Ω1(X ) is such
that dλ ∈ Ω2(X ) is symplectic, λ|∂X is contact and the orientations
on ∂X coming from (X , dλ) and coming from λ|∂X are equal.
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The definitions we need Symplectic manifolds and capacities

Definition (Liouville vector field)
If (X , λ) is a Liouville domain, it’s Liouville vector field is the unique
vector field Z such that λ = ιZ dλ.

Lemma (Z is outward pointing)
If (X , λ) is a Liouville domain, then Z is outward pointing at ∂X.

(X , λ)

(∂X , λ|∂X )Z
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The definitions we need Symplectic manifolds and capacities

Definition (types of morphisms for symplectic manifolds)

Let (X , ωX ), (Y , ωY ) be symplectic manifolds (possibly with boundary
and corners) and φ : X −→ Y be an embedding. Then, φ is symplec-
tic if φ∗ωY = ωX . A symplectomorphism is a symplectic embedding
which is a diffeomorphism. If (X , λX ), (Y , λY ) are exact symplectic,
then we say that

1 φ is symplectic if φ∗λY − λX is closed (⇐⇒ to previous def.);
2 φ is exact symplectic if φ∗λY − λX is exact;
3 φ is Liouville if φ∗λY − λX = 0.
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The definitions we need Symplectic manifolds and capacities

Definition (star-shaped domain)

A star-shaped domain is a compact, connected 2n-dimensional sub-
manifold X of Cn with boundary ∂X such that (X , λ) is a Liouville
domain, where

λ = 1
2

n∑
i=1

(
y idx i − x idy i

)
.

(X , λ)

(∂X , λ|∂X )Z

C
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The definitions we need Symplectic manifolds and capacities

Definition (moment map)
The moment map is the map µ : Cn −→ Rn

≥0 given by

µ(z1, . . . , zn) = π(|z1|2, . . . , |zn|2)

Definition (toric domain)
A toric domain is a star-shaped domain X of the form X = µ−1(Ω).

X is convex if Ω̂ = {(x1, . . . , xn) ∈ Rn | (|x1|, . . . , |xn|) ∈ Ω} is
convex.
X is concave if Rn

≥0 \ Ω is convex.

Definition (diagonal of a toric domain)
If X = µ−1(Ω) is toric, define δ(X ) := max{a | (a, . . . , a) ∈ Ω}.
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The definitions we need Symplectic manifolds and capacities

Example (toric domains)
Ellipsoid:

E (a1, . . . , an) = µ−1(ΩE (a1, . . . , an))

ΩE (a1, . . . , an) =
{

(x1, . . . , xn) ∈ Rn
≥0

∣∣∣∣ n∑
j=1

xj

aj
≤ 1

}

Ball: B(a) = E (a, . . . , a)
Cylinder: Z (a) = E (a,∞, . . . ,∞)
Cube:

P(a) = µ−1(ΩP(a))

ΩP(a) =
{

(x1, . . . , xn) ∈ Rn
≥0

∣∣∣∣ ∀j = 1, . . . , n : xj

a ≤ 1
}
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The definitions we need Symplectic manifolds and capacities

Definition (symplectic capacity)

A domain for a symplectic capacity is a subcategory D of the
category of symplectic manifolds such that (M, ω) ∈ D implies
(M, αω) ∈ D for all α ∈ R \ {0}. A symplectic capacity is a
map c : D −→ [0,+∞], such that
(Monotonicity) c is a functor, i.e. if (M, ωM) −→ (N , ωN) is a mor-

phism in D then c(M, ωM) ≤ c(N , ωN).
(Conformality) For every α ∈ R \ {0} and (M, ω) ∈ D we have that

c(M, αω) = |α|c(M, ω).
If B(1),Z (1) ∈ D, then c is nontrivial or normalized if (resp.):
(Nontriviality) 0 < c(B(1)) ≤ c(Z (1)) < +∞.
(Normalization) 0 < c(B(1)) = 1 = c(Z (1)) < +∞.

Miguel Pereira (UNIA) Symplectic capacities KIAS 2021 13 / 41



The definitions we need Lagrangian capacity
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The definitions we need Lagrangian capacity

Definition (minimal symplectic area of a Lagrangian submanifold)
Let (X , ω) be a symplectic manifold. If L is a Lagrangian submanifold
of X , then we define the minimal symplectic area of L, Amin(L), by

Amin(L) := inf {ω(σ) | σ ∈ π2(X , L), ω(σ) > 0}

= inf
{∫

D
u∗ω

∣∣∣∣ u : (D, ∂D) −→ (X , L),
∫

D
u∗ω > 0

}
∈ [0,∞].

L

Amin(L)
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The definitions we need Lagrangian capacity

Definition (Lagrangian capacity)
We define the Lagrangian capacity of (X , ω), cL(X , ω), by

cL(X , ω) := sup{Amin(L) | L ⊂ X embedded Lagrangian torus}
∈ [0,∞].

Proposition (Properties of the Lagrangian capacity)

The Lagrangian capacity cL satisfies:
(Monotonicity) If ι : (X , ω) −→ (X ′, ω′) is a symplectic embedding

s.t. π2(X ′, ι(X )) = 0, then cL(X , ω) ≤ cL(X ′, ω′).
(Conformality) For all α ∈ R\{0}, cL(X , αω) = |α|cL(X , ω).
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The definitions we need Lagrangian capacity

Definition (cube capacity)
We define the cube capacity of (X , ω), cP(X , ω), by

cP(X , ω) = sup{a ∈ R>0 | ∃ symplectic embedding P(a) −→ X}.
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The definitions we need Lagrangian capacity

Lemma (comparison of cube and Lagrangian capacity)

Let (X , ω) be a symplectic manifold. Then, cL(X , ω) ≥ cP(X , ω).

Proof.
Since

cL(X , ω) = sup{Amin(L) | L ⊂ X embedded Lagrangian torus},
cP(X , ω) = sup{a ∈ R>0 | ∃ symplectic embedding P(a) −→ X},

it suffices to assume that a ∈ R>0 is such that there exists a symplectic
embedding P(a) −→ X and to prove that there exists an embedded
Lagrangian torus L ⊂ X such that a = Amin(L). Define

T = {z ∈ Cn | |z1|2 = a/π, . . . , |zn|2 = a/π}

and L = ι(T ). Then L is as desired.
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The definitions we need Lagrangian capacity

Lemma (comparison of cube capacity and δ)
If X is a convex or concave toric domain, then cP(X ) ≥ δ(X ).

Proof.

X is a convex or concave toric domain
=⇒ P(δ(X )) ⊂ X
=⇒ δ(X ) ∈ {a ∈ R>0 | ∃ symplectic embedding P(a) → X}
=⇒ δ(X ) ≤ cP(X ).

Ω

δ(X)

P(δ(X))

R2
≥0
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The definitions we need Lagrangian capacity

Proposition (Lagrangian capacity of the ball, [CM18])
cL(B(1)) = 1/n.

Proof.
(≥) : cL(B(1)) ≥ cP(B(1)) ≥ δ(B(1)) = 1/n.
(≤) : This is hard. Uses the main theorem of [CM18], which says that
there are disks with boundary on a Lagrangian of small area, and it’s
proof uses holomorphic curve techniques.
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The definitions we need Lagrangian capacity

Proposition (Lagrangian capacity of the cylinder, [CM18])
cL(Z (1)) = 1.

Proof.
(≥) : cL(Z (1)) ≥ cP(Z (1)) ≥ δ(Z (1)) = 1.
(≤) : This is hard. Uses the concepts of Hofer norm, Hofer energy,
displacement energy, and a result of Chekanov comparing Amin and
displacement energy. See [CM18, HZ11, Che98].
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The definitions we need Lagrangian capacity

Remark (motivation for conjecture)
Let X be a convex or concave toric domain. We have proven that
cL(X ) ≥ δ(X ). For the ball and the cylinder, [CM18] have proven that
cL(X ) = δ(X ). This motivates the conjecture below.

Conjecture (Lagrangian capacity of ellipsoid, [CM18])
Let E (a1, . . . , an) ⊂ Cn be an ellipsoid. Then,

cL(E (a1, . . . , an)) = δ(E (a1, . . . , an)) =
( 1

a1
+ · · · 1

an

)−1
.

Remark (main theorem =⇒ conjecture)
Using our main theorem, we will actually show that cL(X ) = δ(X ) for
any convex or concave toric domain (in the section about consequences
of the main theorem).
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The definitions we need Positive S1-equivariant symplectic homology
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The definitions we need Positive S1-equivariant symplectic homology

Let (X , λ) be a nondegenerate Liouville domain.

Definition (completion)

The completion of (X , λ) is an exact symplectic manifold (X̂ , λ̂) given
as follows. As a manifold, X̂ = X ∪∂X R≥0 × ∂X (where we glue with
the flow of the Liouville vector field). The form λ̂ is given by

λ̂|X = λ

λ̂|R≥0×∂X = erλ|∂X .
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The definitions we need Positive S1-equivariant symplectic homology

Consider a “suitable” function f̂q : S2q+1 −→ R.

Definition (Positive S1-equivariant Floer complex)

The PS1EFC of (X , λ) w.r.t. H : S1 × S2q+1 × X̂ −→ R and an
almost complex structure J : S1 × S2q+1 × X̂ −→ End(TX̂ ) is a
chain complex of Q-modules denoted by FC+(X , λ,H , J).
FC+(X , λ,H , J) is generated by (S1-eq. classes of) tuples γ =
(z , γ), where z ∈ S2q+1 is a critical point of f̂q and γ is a 1-
periodic orbit of Hz .
The differential of FC+(X , λ,H , J) counts (S1-eq. classes of)
Floer trajectories u = (w , u), where w : R −→ S2q+1 is a gradient
flow line of f̂q and u : R × S1 −→ X̂ is a sol. of the Floer eq.

∂u
∂s = −J(t,w , u)

(
∂u
∂t − XH(t,w , u)

)
.
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The definitions we need Positive S1-equivariant symplectic homology

Definition (Positive S1-equivariant Floer homology)
FH+(X , λ,H , J) = H(FC+(X , λ,H , J)).

Definition (Positive S1-equivariant symplectic homology)
CH(X , λ) = lim−→H,J FH+(X , λ,H , J).

Remark (Properties of CH(X , λ))
Action filtration: ιa : CHa(X , λ) −→ CH(X , λ);
Viterbo transfer maps: if ϕ : (X , λX ) −→ (Y , λY ) is an exact
symplectic embedding, there exists a corresponding Viterbo
transfer map ϕ! : CH(Y , λY ) −→ CH(X , λX ).
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The definitions we need Gutt-Hutchings capacities
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The definitions we need Gutt-Hutchings capacities

Definition (Gutt-Hutchings capacity)
Let (X , λ) be a Liouville domain (nondegenerate, satisfying the same
topological assumptions) and k ∈ N. The kth Gutt-Hutchings ca-
pacity of (X , λ), denoted ck(X , λ), is given as follows. Choose B ⊂ Cn

a nondegenerate star-shaped domain and ϕ : B −→ X an exact sym-
plectic embedding. Then, ck(X , λ) is the infimum over a > 0 such
that the following map is surjective:

CHa
n+2k−1(X , λ) CHn+2k−1(X , λ) CHn+2k−1(B, λ0)ιa ϕ!

(X , λ)ϕ
Cn

B ϕ(B)
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The definitions we need Gutt-Hutchings capacities

Remark (standard vs alternative definition of ck)
Actually, the definition we gave of ck is an alternative definition. The
standard definition was given in [GH18].

Standard definition ([GH18]): relies on additional properties of
positive S1-equivariant symplectic homology (which we did not
mention), namely maps U and δ. This definition doesn’t rely on
choosing B.
Alternative definition: it’s possible to prove that the definition
we gave and the one given in [GH18] are equivalent. Our definition
doesn’t depend on the maps U or δ, but depends on choosing B.
We will only need the alternative definition to understand the
proof of the main theorem.
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Consequences of the main theorem
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Consequences of the main theorem

Proposition (consequences of the main theorem)

If X = µ−1(Ω) is a convex or concave toric domain,

cP(X ) = cL(X ) = inf
k

ck(X )
k = lim

k→∞

ck(X )
k = δ(X ).

Proof.

δ(X ) = lim
k→∞

ck(X )
k = cP(X ) [shown in [GH18]]

≤ cL(X ) [use a previous lemma]

≤ inf
k

ck(X )
k [use the main theorem]

≤ lim
k→∞

ck(X )
k [inf ≤ lim].
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Proof sketch of the main theorem
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Proof sketch of the main theorem

We now present what hopefully will be the proof of the main theorem
(we present a version of the proof with some imprecisions to make the
discussion simpler, but the key ideas are here).

Step 1/8: what we need to assume and prove
It suffices to assume that

(X , λ) is a ndg. Liouville domain, π1(X ) = 0, c1(TX )|π2(X) = 0
k ∈ N
L ⊂ int X is an embedded Lagrangian torus
a > ck(X , λ)

and to prove that there exists σ ∈ π2(X , L) s.t. 0 < ω(σ) ≤ a/k .

Proof of step 1.
By definition of cL.
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Proof sketch of the main theorem

Step 2/8: constructing a tubular neighbourhood
There exists g a Riemannian metric on L, W ⊂ int X a closed set
containing L and a symplectomorphism ψ : W −→ D∗L and such that
for every closed geodesic γ of L, if l(γ) ≤ a then γ is noncontractible
and nondegenerate and 0 ≤ indM(γ) ≤ n − 1.

Proof of step 2.
By the Lagrangian neighbourhood theorem plus a lemma from [CM18]
which says that metrics of nonpositive sectional curvature (for example
the flat metric on the torus) can be perturbed to have the desired
property.
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Proof sketch of the main theorem

Step 3/8: choosing a small ball inside W
There exists B ⊂ Cn a nondegenerate star-shaped domain and
ϕ : B −→ X an exact symplectic embedding such that ϕ(B) ⊂ int W
and the following map is surjective:

CHa
n+2k−1(X , λ) CHn+2k−1(X ) CHn+2k−1(B, λ0)ιa ϕ!

Proof of step 3.
By definition of ck(X ) and because ck(X ) < a.
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Proof sketch of the main theorem

So, until now we have the following:

(X , λ)
ϕ

Cn

B

ϕ(B)
(L, g)

D∗L

T ∗L

ψ(L, g)

W

Remark (Next steps)
Recall that we wish to show that there exists a disk with boundary on
L and of small area. To accomplish that, we will

Create a special sequence of Floer trajectories;
Take the limit of those Floer trajectories, which is a “Floer
trajectory” which is “broken” into many components;
One of those components is the disk we want.
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Proof sketch of the main theorem

Step 4/8: choosing auxiliary data

Choose H a Hamiltonian and J an almost complex structure on X̂ .
Do a construction from SFT (symplectic field theory) called neck
stretching, which produces a sequence of a.c.s. (Jm)m∈N on X̂ .

Step 5/8: applying the definition of CH
For every m ∈ N there exist generators γ±

m of FC+(X ,H , Jm) and a
Floer trajectory um from γ+

m to γ−
m such that γ+

m is near ∂X , γ−
m is

near ∂B, AH(γ+
m) ≤ a and µ(γ−

m) ≥ n + 2k − 1.

Proof of step 5.
By definition of CH and of Viterbo transfer map, and the fact that
CHa

n+2k−1(X , λ) −→ CHn+2k−1(B, λ0) is surjective.
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Proof sketch of the main theorem

Step 6/8: applying SFT compactness
There exists a broken punctured sphere
u = (u1, . . . ,uN) with N ≥ 2 levels like
the one drawn in the figure.

Proof of step 6.
There is a uniform energy bound E (um) ≤
a. The b.p.s. u is the limit of um as
m → +∞. The limit exists by apply-
ing a modification of the SFT compact-
ness theorem. We also need to do some
broken holomorphic curve analysis to re-
strict the possibilities of limits that we ob-
tain.

γ−

γ+

C

D2 Dp

ρ2 ρp

u1 ⊂
T∗L

u2 ⊂
R × S∗L

uN−1 ⊂
R × S∗L

uN ⊂
X̂ \ L

. . .
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Proof sketch of the main theorem

Step 7/8: index computation
p − 1 ≥ k .

Proof of step 7.
0 ≤ ind(C)

= (n − 3)(1 − p) +
p∑

j=1
µCZ (ρj) − µ(γ−)

≤ (n − 3)(1 − p) +
p∑

j=1
(n − 1) − (n − 1 + 2k)

= 2(p − k − 1).

The first inequality is by transversality in S1EFT, the first equality is
by the index formula in S1EFT, and the second inequality is because
µ(γ−) = n +2k −1 in step 5 by definition of CH and µCZ (ρj) ≤ n −1
by choice of Riemannian metric on L.
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Proof sketch of the main theorem

Step 8/8: energy computation
∃i ∈ {2, . . . , p} : 0 < E (Di) ≤ a/k .

Proof.
By definition of average, there exists i ∈ {2, . . . , p} such that

E (Di) ≤ E (D2) + · · · + E (Dp)
p − 1 [by definition of average]

= E (D2 ∪ · · · ∪ Dp)
p − 1 [energy is additive]

≤ a
p − 1 [by the uniform energy bound]

≤ a
k [by the index computation].

So, Di is the desired disk of positive, small area.
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Proof sketch of the main theorem
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