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Conjecture ([Per22, Conjecture 6.24])

If Xq is a convex or concave toric domain then ¢ (Xq) = dq.

Goal

To motivate and prove the conjecture (in some special cases).
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Definition 2.1
1. The moment map is the map pu: C" — RZ, given by
w(ze, ...y zn) =7z, ..o, | 20]?)- -
2. A toric domain is a star-shaped domain X of the form X =
Xq = p~ 1), where Q C RZ,,.
3. The diagonal of Xq is dg =sup{a|(a,...,a) € Q}.

Example 2.2
P(a):={ze€C"|Vj=1,...,n: w|z]* < a} (cube)
N(a)={zeC"|3j=1,....n 7|z|* < a}
(nondisjoint union of cylinders)



Definition 2.3 ([CM18, Section 1.2])

Let (X,w) be a symplectic manifold. If L is a Lagrangian submani-
fold of X, then we define the minimal symplectic area of L by

Anmin(L) = inf{w(o) | o € m(X, L), w(o) > 0}.

Definition 2.4 ([CM18, Section 1.2])
The Lagrangian capacity of (X, w) is

cL(X) = sup{Amin(L) | L C X is an embedded Lagrangian torus}.
Definition 2.5
The cube capacity is given by

cp(X,w) == sup{a | 3 symplectic embedding P?>"(a) — X}.



Lemma 2.6
If X is a star-shaped domain, then c (X) > cp(X).

Proof.

Let ¢: P(a) — X be a symplectic embedding, for some a > 0. We
want to show that c¢;(X) > a. Define T := u~1(a,...,a) C OP(a)
and L :=(T) C X. Then, ¢, (X) > Anin(L) = Anin(T) =a. O
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Figure: Proof of ¢;(X) > cp(X) for X = Xq



Lemma 2.7
If Xq is a convex or concave toric domain, then cp(Xq) > dq.

Proof.
Since Xq is convex or concave, we have P(dq) C Xq C N(dq). The
result follows since cp(Xq) = sup{a | 3 P(a) — Xq}. O
Qn(s)
Q
Qp(sq)
o}

Figure: If Xq is convex or concave then P(dg) C Xqo C N(dq)



We now consider the results by Cieliebak—Mohnke for the Lagrangian
capacity of the ball and the cylinder.

Proposition 2.8 ([CM18, Corollary 1.3])
The Lagrangian capacity of the ball is

1

cu(B*'(1)) = = Oa(B2n(1))-

Proposition 2.9 ([CM18, p. 215-216])
The Lagrangian capacity of the cylinder is

ct(Z27(1)) = 1 = dqzan(ry)-



Conclusion

Xq is a convex or concave toric domain = ¢;(Xq) > dq
Xa is the ball or the cylinder = ¢ (Xq) = dq

Conjecture 2.10 ([Per22, Conjecture 6.24])

If Xq is a convex or concave toric domain then

c(Xa) = da.
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To prove our results about the Conjecture 2.10, we will need to use
the following symplectic capacities.

McDuff-Siegel capacities @fz [MS22]
Higher symplectic capacities gfz [Sie20]

Gutt-Hutchings capacities ¢l [GH18]

for k,¢ € Z>1. We will only need to consider these capacities for
=1, e ﬁfl,gfl.



Theorem 3.1 ([Per22, Theorem 6.40])
If (X, )\) is a Liouville domain and k > 1 then ¢ (X) < g7 (X)/k.

Proof sketch.

1. By definition of ¢, it suffices to assume that L C X is an
embedded Lagrangian torus and to prove that there exists a
disk D with boundary on L with “small” symplectic area.

2. By definition of ﬁfl, there exists a sequence u; of J;-
holomorphic curves with bounded energy and satisfying a tan-
gency constraint.

3. By the SFT compactness theorem, u; converges to a broken
holomorphic curve F = (Fq,...,Fyn) (neck stretching along
S*L).

4. One of the components of the broken holomorphic curve F will
be the desired disk. O



Theorem 3.2 ([Per22, Theorem 6.41])

If Xq is a 4-dimensional convex toric domain then c;(Xq) = dq.

Proof.
For every k € Z>1,

0q < cp(Xq) [by Lemma 2.7]
< c(Xa) [by Lemma 2.6]
< ﬁfl(Xg)/k [by Theorem 3.1]
= cH(Xq)/k [dim4 and [MS22, Proposition 5.6.1]]
< cCM(N(3q))/k [Xq is convex, hence Xq C N(8q)]
=dq(k+1)/k [by [GH18, Lemma 1.19]].



Theorem 3.3 ([Per22, Theorem 7.64])

If X is a Liouville domain such that m(X) = 0 and 2¢;(TX) =0
then g (X) = cSH(X).

Proof sketch.

1. Let E = E(a1,...,a,) be a “skinny” ellipsoid such that there
exists a strict exact symplectic embedding ¢: E — X.

2. By definition of CE’H and gfl (and the Bourgeois—Oancea iso-
morphism), it suffices to show that #" MZ(y)(T®x) # 0.

3. Show that MZ(7)(T®)x) is transversely cut out. This implies
that ML) (THx) = #MEG)(T ).

4. Compute explicitly that #Mé(v)(T(k)@ # 0 (curves in this
moduli space are polynomials). []



Theorem 3.4 ([Per22, Theorem 7.65])

Assume that a suitable virtual perturbation scheme exists. If Xq is
a convex or concave toric domain then c (Xq) = dq.

Proof.

da < cp(Xa) [by Lemma 2.7]
< c(Xa) [by Lemma 2.6]
< E‘E (Xa)/k [by Theorem 3.1]
< GE (Xa)/k [by [MS22, Section 3.4]]
= M (Xa)/k [by Theorem 3.3]
< ¢ (N(8q))/k  [Xq is convex, hence Xo C N(dq)]
=dq(k+n—1)/k [by [GH18, Lemma 1.19]]. O



~<1

¢ B (X)
<

a(X) < |r/1(f p

o (X) = "(X)

cL(Xa) = da

Thank you for listening!
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