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Conjecture ([Per22, Conjecture 6.24])
If XΩ is a convex or concave toric domain then cL(XΩ) = δΩ.

Goal
To motivate and prove the conjecture (in some special cases).



5/19

Table of Contents

Goal

Basics

Results



6/19

Definition 2.1
1. The moment map is the map µ : Cn −→ Rn

≥0 given by
µ(z1, . . . , zn) := π(|z1|2, . . . , |zn|2).

2. A toric domain is a star-shaped domain X of the form X =
XΩ := µ−1(Ω), where Ω ⊂ Rn

≥0.
3. The diagonal of XΩ is δΩ := sup{a | (a, . . . , a) ∈ Ω}.

Example 2.2
P(a) := {z ∈ Cn | ∀j = 1, . . . , n : π|zj |2 ≤ a} (cube)
N(a) := {z ∈ Cn | ∃j = 1, . . . , n : π|zj |2 ≤ a}

(nondisjoint union of cylinders)
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Definition 2.3 ([CM18, Section 1.2])
Let (X , ω) be a symplectic manifold. If L is a Lagrangian submani-
fold of X , then we define the minimal symplectic area of L by

Amin(L) := inf{ω(σ) | σ ∈ π2(X , L), ω(σ) > 0}.

Definition 2.4 ([CM18, Section 1.2])
The Lagrangian capacity of (X , ω) is

cL(X ) := sup{Amin(L) | L ⊂ X is an embedded Lagrangian torus}.

Definition 2.5
The cube capacity is given by

cP(X , ω) := sup{a | ∃ symplectic embedding P2n(a) −→ X}.
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Lemma 2.6
If X is a star-shaped domain, then cL(X ) ≥ cP(X ).

Proof.
Let ι : P(a) −→ X be a symplectic embedding, for some a > 0. We
want to show that cL(X ) ≥ a. Define T := µ−1(a, . . . , a) ⊂ ∂P(a)
and L := ι(T ) ⊂ X . Then, cL(X ) ≥ Amin(L) = Amin(T ) = a.

Ω

a

ΩP(a)

Amin(T ) µ(T )

Figure: Proof of cL(X ) ≥ cP(X ) for X = XΩ
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Lemma 2.7
If XΩ is a convex or concave toric domain, then cP(XΩ) ≥ δΩ.

Proof.
Since XΩ is convex or concave, we have P(δΩ) ⊂ XΩ ⊂ N(δΩ). The
result follows since cP(XΩ) := sup{a | ∃ P(a) ↪→ XΩ}.

ΩN(δΩ)

Ω

δΩ

ΩP(δΩ)

Figure: If XΩ is convex or concave then P(δΩ) ⊂ XΩ ⊂ N(δΩ)
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We now consider the results by Cieliebak–Mohnke for the Lagrangian
capacity of the ball and the cylinder.

Proposition 2.8 ([CM18, Corollary 1.3])
The Lagrangian capacity of the ball is

cL(B2n(1)) = 1
n = δΩ(B2n(1)).

Proposition 2.9 ([CM18, p. 215-216])
The Lagrangian capacity of the cylinder is

cL(Z 2n(1)) = 1 = δΩ(Z2n(1)).
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Conclusion
XΩ is a convex or concave toric domain =⇒ cL(XΩ) ≥ δΩ

XΩ is the ball or the cylinder =⇒ cL(XΩ) = δΩ

Conjecture 2.10 ([Per22, Conjecture 6.24])
If XΩ is a convex or concave toric domain then

cL(XΩ) = δΩ.
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To prove our results about the Conjecture 2.10, we will need to use
the following symplectic capacities.

McDuff–Siegel capacities g̃≤ℓ
k [MS22]

Higher symplectic capacities g≤ℓ
k [Sie20]

Gutt–Hutchings capacities cGH
k [GH18]

for k, ℓ ∈ Z≥1. We will only need to consider these capacities for
ℓ = 1, i.e. g̃≤1

k , g≤1
k .
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Theorem 3.1 ([Per22, Theorem 6.40])
If (X , λ) is a Liouville domain and k ≥ 1 then cL(X ) ≤ g̃≤1

k (X )/k.

Proof sketch.
1. By definition of cL, it suffices to assume that L ⊂ X is an

embedded Lagrangian torus and to prove that there exists a
disk D with boundary on L with “small” symplectic area.

2. By definition of g̃≤1
k , there exists a sequence ut of Jt-

holomorphic curves with bounded energy and satisfying a tan-
gency constraint.

3. By the SFT compactness theorem, ut converges to a broken
holomorphic curve F = (F1, . . . , FN) (neck stretching along
S∗L).

4. One of the components of the broken holomorphic curve F will
be the desired disk.
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Theorem 3.2 ([Per22, Theorem 6.41])
If XΩ is a 4-dimensional convex toric domain then cL(XΩ) = δΩ.

Proof.
For every k ∈ Z≥1,

δΩ ≤ cP(XΩ) [by Lemma 2.7]
≤ cL(XΩ) [by Lemma 2.6]
≤ g̃≤1

k (XΩ)/k [by Theorem 3.1]
= cGH

k (XΩ)/k [dim 4 and [MS22, Proposition 5.6.1]]
≤ cGH

k (N(δΩ))/k [XΩ is convex, hence XΩ ⊂ N(δΩ)]
= δΩ(k + 1)/k [by [GH18, Lemma 1.19]].
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Theorem 3.3 ([Per22, Theorem 7.64])
If X is a Liouville domain such that π1(X ) = 0 and 2c1(TX ) = 0
then g≤1

k (X ) = cGH
k (X ).

Proof sketch.
1. Let E = E (a1, . . . , an) be a “skinny” ellipsoid such that there

exists a strict exact symplectic embedding ϕ : E −→ X .
2. By definition of cGH

k and g≤1
k (and the Bourgeois–Oancea iso-

morphism), it suffices to show that #virMJ
E (γ)⟨T (k)x⟩ ≠ 0.

3. Show that MJ
E (γ)⟨T (k)x⟩ is transversely cut out. This implies

that #virMJ
E (γ)⟨T (k)x⟩ = #MJ

E (γ)⟨T (k)x⟩.
4. Compute explicitly that #MJ

E (γ)⟨T (k)x⟩ ̸= 0 (curves in this
moduli space are polynomials).
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Theorem 3.4 ([Per22, Theorem 7.65])
Assume that a suitable virtual perturbation scheme exists. If XΩ is
a convex or concave toric domain then cL(XΩ) = δΩ.

Proof.

δΩ ≤ cP(XΩ) [by Lemma 2.7]
≤ cL(XΩ) [by Lemma 2.6]
≤ g̃≤1

k (XΩ)/k [by Theorem 3.1]
≤ g≤1

k (XΩ)/k [by [MS22, Section 3.4]]
= cGH

k (XΩ)/k [by Theorem 3.3]
≤ cGH

k (N(δΩ))/k [XΩ is convex, hence XΩ ⊂ N(δΩ)]
= δΩ(k + n − 1)/k [by [GH18, Lemma 1.19]].
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cL(X ) ≤ inf
k

g̃≤1
k (X )

k

g≤1
k (X ) = cGH

k (X )

cL(XΩ) = δΩ

Thank you for listening!
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