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Conjecture ([Per22, Conjecture 6.24])
If XΩ is a convex or concave toric domain then cL(XΩ) = δΩ.

Goal
To motivate and prove the conjecture (in some special cases).
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Definition 2.1
The moment map is the map µ : Cn −→ Rn

≥0 given by

µ(z1, . . . , zn) := π(|z1|2, . . . , |zn|2).

Define also

ΩX := Ω(X ) := µ(X ) ⊂ Rn
≥0, for every X ⊂ Cn,

XΩ := X (Ω) := µ−1(Ω) ⊂ Cn, for every Ω ⊂ Rn
≥0,

δΩ := δ(Ω) := sup{a | (a, . . . , a) ∈ Ω}, for every Ω ⊂ Rn
≥0.

We call δΩ the diagonal of Ω.

Definition 2.2
A toric domain is a star-shaped domain X of the form X = XΩ. A
toric domain X = XΩ is
▶ convex if Ω̂ := {(x1, . . . , xn) ∈ Rn | (|x1|, . . . , |xn|) ∈ Ω} is

convex;
▶ concave if Rn

≥0 \ Ω is convex.
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Example 2.3
The following are toric domains:

E (a1, . . . , an) :=
{

z ∈ Cn
∣∣∣ n∑

j=1

π|zj |2

aj
≤ 1

}
(ellipsoid)

B(a) :=
{

z ∈ Cn
∣∣∣ n∑

j=1

π|zj |2

a ≤ 1
}

(ball)

Z (a) := {z ∈ Cn | π|z1|2 ≤ a} (cylinder)
P(a) := {z ∈ Cn | ∀j = 1, . . . , n : π|zj |2 ≤ a} (cube)
N(a) := {z ∈ Cn | ∃j = 1, . . . , n : π|zj |2 ≤ a}

(nondisjoint union of cylinders)
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Figure: Ball and cube
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1 = δ
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ΩZ (1) ΩN(1)

Figure: Cylinder and nondisjoint union of cylinders
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Definition 2.4
A symplectic capacity is a map c which to every symplectic mani-
fold (possibly in a restricted subclass) assigns an element of [0, +∞],
such that
▶ (Monotonicity) If (X , ωX ) −→ (Y , ωY ) is a symplectic embed-

ding of codimension 0 (possibly in a restricted subclass) then
c(X , ωX ) ≤ c(Y , ωY );

▶ (Conformality) If α > 0 then c(X , αω) = αc(X , ω).

Example 2.5
The cube capacity is given by

cP(X , ω) := sup{a | ∃ symplectic embedding P2n(a) −→ X}.
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Definition 3.1 ([CM18, Section 1.2])
Let (X , ω) be a symplectic manifold. If L is a Lagrangian submani-
fold of X , then we define the minimal symplectic area of L by

Amin(L) := inf{ω(σ) | σ ∈ π2(X , L), ω(σ) > 0}.

Definition 3.2 ([CM18, Section 1.2])
The Lagrangian capacity of (X , ω) is

cL(X ) := sup{Amin(L) | L ⊂ X is an embedded Lagrangian torus}.
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Lemma 3.3
If X is a star-shaped domain, then cL(X ) ≥ cP(X ).

Proof.
Let ι : P(a) −→ X be a symplectic embedding, for some a > 0. We
want to show that cL(X ) ≥ a. Define T := µ−1(a, . . . , a) ⊂ ∂P(a)
and L := ι(T ) ⊂ X . Then, cL(X ) ≥ Amin(L) = Amin(T ) = a.

Ω

a

ΩP(a)

Amin(T ) µ(T )

Figure: Proof of cL(X ) ≥ cP(X ) for X = XΩ
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Lemma 3.4
If XΩ is a convex or concave toric domain, then cP(XΩ) ≥ δΩ.

Proof.
Since XΩ is convex or concave, we have P(δΩ) ⊂ XΩ ⊂ N(δΩ). The
result follows since cP(XΩ) := sup{a | ∃ P(a) ↪→ XΩ}.

ΩN(δΩ)

Ω

δΩ

ΩP(δΩ)

Figure: If XΩ is convex or concave then P(δΩ) ⊂ XΩ ⊂ N(δΩ)
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We now consider the results by Cieliebak–Mohnke for the Lagrangian
capacity of the ball and the cylinder.

Proposition 3.5 ([CM18, Corollary 1.3])
The Lagrangian capacity of the ball is

cL(B2n(1)) = 1
n = δΩ(B2n(1)).

Proposition 3.6 ([CM18, p. 215-216])
The Lagrangian capacity of the cylinder is

cL(Z 2n(1)) = 1 = δΩ(Z2n(1)).
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Conclusion
XΩ is a convex or concave toric domain =⇒ cL(XΩ) ≥ δΩ

XΩ is the ball or the cylinder =⇒ cL(XΩ) = δΩ

Conjecture 3.7 ([CM18, Conjecture 1.5])
The Lagrangian capacity of the ellipsoid is

cL(E (a1, . . . , an)) =
( 1

a1
+ · · · + 1

an

)−1
= δΩ(E(a1,...,an)).

Conjecture 3.8 ([Per22, Conjecture 6.24])
If XΩ is a convex or concave toric domain then

cL(XΩ) = δΩ.



17/27

Table of Contents

Goal

Basics

Lagrangian capacity

Results



18/27

To prove our results about the Conjecture 3.8, we will need to use
the following symplectic capacities.

McDuff–Siegel capacities g̃≤ℓ
k [MS22]

Higher symplectic capacities g≤ℓ
k [Sie20]

Gutt–Hutchings capacities cGH
k [GH18]

for k, ℓ ∈ Z≥1. We will only need to consider these capacities for
ℓ = 1, i.e. g̃≤1

k , g≤1
k .
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Theorem 4.1 ([Per22, Theorem 6.40])
If (X , λ) is a Liouville domain and k ≥ 1 then cL(X ) ≤ g̃≤1

k (X )/k.

Proof sketch (1/2).
1. By definition of cL, it suffices to assume that L ⊂ X is an

embedded Lagrangian torus and to prove that there exists a
disk D with boundary on L with “small” symplectic area.

2. By definition of g̃≤1
k , there exists a sequence ut of Jt-

holomorphic curves with bounded energy and satisfying a tan-
gency constraint.

3. By the SFT compactness theorem, ut converges to a broken
holomorphic curve (F1, . . . , FN) (neck stretching along S∗L).
Let C be the component of the limit which inherits the tangency
constraint.
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Proof sketch (2/2).
4. Since L is a torus, there is an upper bound on the Morse indices

of the geodesics in L. Use this together with the SFT index
formula to conclude that C must have at least k +1 punctures.

5. Therefore, C gives rise to k disks D1, . . . , Dk in X with bound-
ary in L. One of these disks is as desired.

F 3 ⊂ X 3 = X̂ \ L

F 2 ⊂ X 2 = R × S∗L

F 1 ⊂ X 1 = T ∗L

γ

γ1 γ2

C

γ3

x
D

D2 D3

Figure: The broken holomorphic curve F in the case N = 3
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Theorem 4.2 ([Per22, Theorem 6.41])
If XΩ is a 4-dimensional convex toric domain then cL(XΩ) = δΩ.

Proof.
For every k ∈ Z≥1,

δΩ ≤ cP(XΩ) [by Lemma 3.4]
≤ cL(XΩ) [by Lemma 3.3]
≤ g̃≤1

k (XΩ)/k [by Theorem 4.1]
= cGH

k (XΩ)/k [dim 4 and [MS22, Proposition 5.6.1]]
≤ cGH

k (N(δΩ))/k [XΩ is convex, hence XΩ ⊂ N(δΩ)]
= δΩ(k + 1)/k [by [GH18, Lemma 1.19]].
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This finishes the proof of Conjecture 3.8 in the case where XΩ is
convex and 4-dimensional. We only used “convex + 4-dimensional”
to say that g̃≤1

k (XΩ) = cGH
k (XΩ). This suggests the following con-

jecture.

Conjecture 4.3 ([Per22, Conjecture 6.42])
If X is a Liouville domain, π1(X ) = 0 and c1(TX )|π2(X) = 0, then

cL(X , λ) ≤ inf
k

cGH
k (X , λ)

k .

We will now prove Conjecture 3.8 in full generality, but assuming
that there exists a suitable virtual perturbation scheme which defines
the curve counts of linearized contact homology. In this case, we
can define Siegel’s higher symplectic capacities g≤1

k .



23/27

Theorem 4.4 ([Per22, Theorem 7.64])
If X is a Liouville domain such that π1(X ) = 0 and 2c1(TX ) = 0
then g≤1

k (X ) = cGH
k (X ).

Proof sketch (1/2).
1. Let E = E (a1, . . . , an) be a “skinny” ellipsoid such that there

exists a strict exact symplectic embedding ϕ : E −→ X . Con-
sider the commutative diagram

SHS1,(ε,a]
n−1+2k(X ) SHS1,+

n−1+2k(X ) SHS1,+
n−1+2k(E )

CHa
n−1+2k(X ) CHn−1+2k(X ) CHn−1+2k(E )

CHa
n−1+2k(X ) CHn−1+2k(X ) Q

ιS1,a

Φa
BO

ϕS1
!

ΦBO ΦBO

ιa ϕ!

ϵE
k

ιa
ϵX

k
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Proof sketch (2/2).
2. By definition of g≤1

k and cGH
k , we only need to show that ϵE

k is
an isomorphism, i.e. that the virtual count of curves (asymp-
totically cylindrical, satisfying a tangency constraint) in the el-
lipsoid is nonzero.

3. For this we show (using automatic transversality techniques)
that moduli spaces of asymptotically cylindrical holomorphic
curves in ellipsoid are transversely cut out.

4. Hence virtual counts agree with “usual” counts. We can count
these curves explicitly (they are polynomials) and conclude that
the count is nonzero.
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Theorem 4.5 ([Per22, Theorem 7.65])
Assume that a suitable virtual perturbation scheme exists. If XΩ is
a convex or concave toric domain then cL(XΩ) = δΩ.

Proof.

δΩ ≤ cP(XΩ) [by Lemma 3.4]
≤ cL(XΩ) [by Lemma 3.3]
≤ g̃≤1

k (XΩ)/k [by Theorem 4.1]
≤ g≤1

k (XΩ)/k [by [MS22, Section 3.4]]
= cGH

k (XΩ)/k [by Theorem 4.4]
≤ cGH

k (N(δΩ))/k [XΩ is convex, hence XΩ ⊂ N(δΩ)]
= δΩ(k + n − 1)/k [by [GH18, Lemma 1.19]].
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cL(X ) ≤ inf
k

g̃≤1
k (X )

k

g≤1
k (X ) = cGH

k (X )

cL(XΩ) = δΩ

Thank you for listening!
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