Stops

Miguel Pereira¹

 $^1 {\rm Universit\ddot{a}t}$ Augsburg

Berlin-Hamburg-Augsburg Symplectic Seminar, 27-04-2021

Liouville domains ([Syl19, §2.1])

- The category of Liouville domains
- Moser Lemmas
- Product of Liouville domains

Stops ([Syl19, §2.2]) Stops and narrow stops

• Stops and Liouville pairs

Liouville domains ([Syl19, §2.1])

- The category of Liouville domains
- Moser Lemmas
- Product of Liouville domains

2 Stops ([Syl19, §2.2])
• Stops and narrow stops
• Stops and Liouville pairs

Liouville domains ([Syl19, §2.1])

• The category of Liouville domains

- Moser Lemmas
- Product of Liouville domains

2 Stops ([Syl19, §2.2])

- Stops and narrow stops
- Stops and Liouville pairs

Definition (Liouville domain)

A **Liouville domain** is a pair (X, λ) , where X is a compact, connected smooth manifold with boundary ∂X and $\lambda \in \Omega^1(X)$ is such that $d\lambda \in \Omega^2(X)$ is symplectic, $\lambda|_{\partial X}$ is contact and the orientations on ∂X coming from $(X, d\lambda)$ and coming from $\lambda|_{\partial X}$ are equal.

Definition (Liouville vector field)

If (X, λ) is a Liouville domain, it's **Liouville vector field** is the unique vector field Z such that $Z = \iota_Z d\lambda$.

Lemma (Z is outward pointing)

If (X, λ) is a Liouville domain, then Z is outward pointing at ∂X .

Definition (symplectization)

Let (M, α) be a contact manifold. We define a new exact symplectic manifold, called the **symplectization** of (M, α) , as follows. As a manifold, the symplectization is $\mathbb{R}^+ \times M$, with coordinate on \mathbb{R}^+ denoted by *r*. The symplectic potential of $\mathbb{R}^+ \times M$ is the 1-form $r\alpha$.

Lemma (a symplectic embedding for completions) Let (X, λ) be a Liouville domain with Liouville vector field Z. Consider the "negative symplectization" ($(0, 1] \times \partial X, r\lambda|_{\partial X}$) of $(\partial X, \lambda|_{\partial X})$. Then, the flow of Z

$$\Phi_Z \colon (0,1] \times \partial X \longrightarrow X (t,x) \longmapsto \phi_Z^{\ln t}(x)$$

is an embedding such that $\Phi_Z^* \lambda = r \lambda |_{\partial X}$.

Definition (completion)

Let (X, λ) be a Liouville domain. We define an exact symplectic manifold $(\hat{X}, \hat{\lambda})$ called the **completion** of (X, λ) , as follows. As a smooth manifold, \hat{X} is the gluing of X and $\mathbb{R}^+ \times \partial X$ along

$$\Phi_Z \colon (0,1] \times \partial X \longrightarrow \Phi_Z((0,1] \times \partial X) \subset X$$

This gluing comes with smooth embeddings

$$\iota_{\mathbf{X}} \colon \mathbf{X} \longrightarrow \hat{\mathbf{X}}, \\ \iota_{\mathbb{R}^+ \times \partial \mathbf{X}} \colon \mathbb{R}^+ \times \partial \mathbf{X} \longrightarrow \hat{\mathbf{X}}.$$

To define $\hat{\lambda}$, it suffices to say what is $\iota_X^* \hat{\lambda}$ and what is $\iota_{\mathbb{R}^+ \times \partial X}^* \hat{\lambda}$:

$$\iota_X^* \hat{\lambda} \coloneqq \lambda, \ \iota_{\mathbb{R}^+ imes \partial X} \hat{\lambda} \coloneqq r \lambda|_{\partial X}.$$

Definition (morphism of Liouville domains, [Syl19])

If (F, λ_F) and (M, λ_M) are Liouville domains, a **Liouville morphism** from F to M is a proper embedding $\phi: \hat{F} \longrightarrow \hat{M}$, such that

- There exists $f: \hat{F} \longrightarrow \mathbb{R}$ compactly supported such that $\phi^* \hat{\lambda}_M = \hat{\lambda}_F + df$;
- There exists a compact set K in \hat{F} such that \hat{Z}_F is ϕ -related to \hat{Z}_M outside of K.

Definition (category of Liouville domains)

Liouville domains and morphisms of Liouville domains assemble into a category which we call **Liouv**.

- Identities: if $(M, \lambda) \in \text{Liouv}$, then $id_{(M,\lambda)} = id_{\hat{M}}$.
- Composition: if $\phi \in \text{Hom}(F, M)$ and $\psi \in \text{Hom}(M, N)$, then $\psi * \phi \in \text{Hom}(F, N)$ is given by $\psi * \phi = \psi \circ \phi \colon \hat{F} \longrightarrow \hat{M} \longrightarrow \hat{N}$.

Liouville domains ([Syl19, §2.1])

- The category of Liouville domains
- Moser Lemmas
- Product of Liouville domains

2 Stops ([Syl19, §2.2])

- Stops and narrow stops
- Stops and Liouville pairs

Lemma (Moser, [CE12, thm. 6.8], [Syl19, lem. 2.1])

Let (M, λ_t) be a family of Liouville domains, for $t \in [0, 1]$ such that there exists $C \subset \text{int } M$ compact for which $\lambda_t|_{M \setminus C} = \lambda_0|_{M \setminus C}$ for all t. Then, there exists a smooth family of Liouville isomorphisms $\phi_t \colon (M, \lambda_0) \longrightarrow (M, \lambda_t)$ such that ϕ_0 is the identity morphism.

Proof.

Consider $(\hat{M}, \hat{\lambda}_t)$. We will use **Moser's trick**. Define • $X_t \in \mathfrak{X}(\hat{M})$ by $\dot{\hat{\lambda}}_t + \iota_{X_t} d\hat{\lambda}_t = 0$ • $\phi_t : \hat{M} \longrightarrow \hat{M}$ to be the time dependent flow of X_t • $f_t := \int_0^t \phi_s^* \iota_{X_s} \hat{\lambda}_s ds$. Compute $\frac{d}{dt} \phi_t^* \hat{\lambda}_t = \phi_t^* (d\iota_{X_t} \hat{\lambda}_t)$ using Cartan's magic formula. Compute $\phi_t^* \hat{\lambda}_t = \hat{\lambda}_0 + df_t$ using the fundamental theorem of calculus. Then $\phi_t : \hat{M} \longrightarrow \hat{M}$ is the desired morphism $\phi_t : (M, \lambda_0) \longrightarrow (M, \lambda_t)$.

Remark (deform Liouville form)

Let (X, λ) be a Liouville domain, $f: X \longrightarrow \mathbb{R}$ be a function with supp $f \subset \operatorname{int} X$ and $\lambda' := \lambda + df$. Then, (X, λ') is a Liouville domain which is isomorphic to (X, λ) in **Liouv**.

Lemma (deform by changing collar)

Let (X, λ) be a Liouville domain, $f : \partial X \longrightarrow \mathbb{R}^+$ be a function and $X_f := \hat{X} \setminus \{(r, x) \in \mathbb{R}^+ \times \partial X \mid r > f(x)\}, \lambda_f = \hat{\lambda}|_{X_f}$. Then, (X_f, λ_f) is a Liouville domain which is canonically isomorphic to (X, λ) in Liouv.

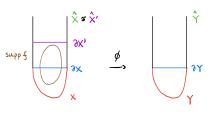
Proof.

$$\begin{array}{cccc} X & \longrightarrow & \hat{X} & \text{Suffices to prove in the case } f(x) \geq 1. & \text{Consider the} \\ \iota & & & \downarrow_{\hat{\iota}} & \text{inclusion } \iota \colon X \longrightarrow X_f \text{ and the induced map } \hat{\iota} \colon \hat{X} \longrightarrow \\ \hat{X}_f & \text{(completion is functorial). Then, } \hat{\iota} \colon (\hat{X}, \hat{\lambda}_X) \longrightarrow \\ X_f & \longrightarrow & \hat{X}_f & (\hat{X}_f, \hat{\lambda}_f) \text{ is a diffeomorphism such that } \hat{\iota}^* \hat{\lambda}_f = \hat{\lambda}. & \Box \end{array}$$

Lemma (from
$$\phi^* \hat{\lambda}_Y = \hat{\lambda}_X + df$$
 to $(\phi')^* \hat{\lambda}_Y = \hat{\lambda}'_X$)

Let $\phi: (X, \lambda_X) \longrightarrow (Y, \lambda_Y)$ be a morphism in **Liouv**. Then there exist $\iota: (X, \lambda_X) \longrightarrow (X', \lambda'_X)$ an isomorphism and $\phi': (X', \lambda'_X) \longrightarrow (Y, \lambda_Y)$ a morphism such that $(\phi')^* \hat{\lambda}_Y = \hat{\lambda}'_X$ and $\phi = \phi' * \iota$.

Proof.



Choose $X' \subset \hat{X}$ a Liouville domain so big such that $\operatorname{supp} f \subset \operatorname{int} X'$. Define $\lambda'_X := \hat{\lambda}_X|_{X'} + \mathrm{d}f$. Notice that $(X, \lambda_X) \cong (X', \hat{\lambda}_X|_{X'}) \cong$ (X', λ'_X) and call the isomorphism $\iota : (X, \lambda_X) \longrightarrow (X', \lambda'_X)$. Define ϕ' so that $\phi' * \iota = \phi$.

Liouville domains ([Syl19, §2.1])

- The category of Liouville domains
- Moser Lemmas
- Product of Liouville domains

2 Stops ([Syl19, §2.2])

- Stops and narrow stops
- Stops and Liouville pairs

We now consider **products** of Liouville domain. Our goal is to show that the operation of taking the product is a functor

 $\times : \mathsf{sk}(\mathsf{Liouv}) \times \mathsf{sk}(\mathsf{Liouv}) \longrightarrow \mathsf{sk}(\mathsf{Liouv}).$

(Here sk(Liouv) denotes the skeleton of the category Liouv).

Product of Liouville domains is well defined up to iso.

If (M, λ_M) , (N, λ_N) are Liouville domains, then $[M \times N, \lambda_M + \lambda_N] \in \mathbf{sk}(\mathbf{Liouv})$ is well defined.

Explanation

- $M \times N$ is a manifold with boundary and corners.
- We can smoothen the corners of $M \times N$ and get a Liouville domain. This procedure depends on a choice of smoothening.
- The completion of the smoothening is isomorphic (in **Liouv**) to $\hat{M} \times \hat{N}$, regardless of the choice of smoothening.

Induced maps on products are not quite Liouville morphisms If (X, λ_X) , (Y, λ_Y) , (M, λ_M) , (N, λ_N) are Liouville domains and • $\phi: (X, \lambda_X) \longrightarrow (M, \lambda_M)$ is a morphism, $\phi^* \hat{\lambda}_M = \hat{\lambda}_X + df$; • $\psi: (Y, \lambda_Y) \longrightarrow (N, \lambda_N)$ is a morphism, $\psi^* \hat{\lambda}_N = \hat{\lambda}_Y + dg$. Then $\phi \times \psi: \hat{X} \times \hat{Y} \longrightarrow \hat{M} \times \hat{N}$ is such that $(\phi \times \psi)^* (\hat{\lambda}_M \times \hat{\lambda}_N) = (\hat{\lambda}_X + \hat{\lambda}_Y) + d(\underbrace{f \circ \phi + g \circ \psi}_{\text{not compactly supported}})$.

Induced maps on products are well defined up to iso.

However, doing the trick from a previous lemma

•
$$\phi': (X', \lambda'_X) \longrightarrow (M, \lambda_M)$$
 is a morphism, $(\phi')^* \hat{\lambda}_M = \hat{\lambda}'_X$;
• $\psi': (Y', \lambda'_Y) \longrightarrow (N, \lambda_N)$ is a morphism, $(\psi')^* \hat{\lambda}_N = \hat{\lambda}'_Y$.
Then $\phi' \times \psi': \hat{X}' \times \hat{Y}' \longrightarrow \hat{M} \times \hat{N}$ is such that
 $(\psi')^* \hat{\lambda}_N = \hat{\lambda}'_Y$.

$$(\phi' \times \psi')^* (\hat{\lambda}_M \times \hat{\lambda}_N) = (\hat{\lambda}'_X + \hat{\lambda}'_Y).$$

Liouville domains ([Syl19, §2.1])

- The category of Liouville domains
- Moser Lemmas
- Product of Liouville domains
- Stops ([Syl19, §2.2])Stops and narrow stops
 - Stops and Liouville pairs

Liouville domains ([Syl19, §2.1])

- The category of Liouville domains
- Moser Lemmas
- Product of Liouville domains

Stops ([Syl19, §2.2]) Stops and narrow stops

• Stops and Liouville pairs

For $\rho > 0$, define $\mathbb{H}_{\rho} = \{z \in \mathbb{C} \mid \operatorname{Re}(z) \geq -\rho\}$, equipped with $\lambda_{\mathbb{C}} = \frac{1}{2}(x \mathrm{d}y - y \mathrm{d}x)$.

Definition (stop, [Syl19, def. 2.3])

A stop is a triple (M, F, σ) , where (M, λ_M) is a 2*n*-dimensional Liouville domain, (F, λ_F) is a (2n-2)-dimensional Liouville domain (the fibre of the stop), and $\sigma: \hat{F} \times \mathbb{H}_{\rho} \longrightarrow \hat{M}$ is a proper embedding for which there exists $f: \hat{F} \times \mathbb{H}_{\rho} \longrightarrow \mathbb{R}$ compactly supported such that $\sigma^* \hat{\lambda}_M = \hat{\lambda}_F + \lambda_{\mathbb{C}} + \mathrm{d}f$. The width of (M, F, σ) is ρ .

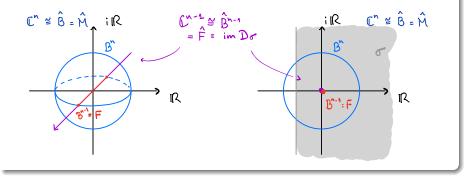
Definition (divisor, [Syl19, def. 2.3])

If (M, F, σ) is a stop, it's **divisor** is the map $D_{\sigma} \coloneqq \sigma|_{\hat{F} \times \{0\}} \colon \hat{F} \longrightarrow \hat{M}$.

Example (stop)

We will give an example of a stop (M, F, σ) .

(M, λ_M) := (Bⁿ, λ_{Cⁿ}), which implies (Â, Â_M) ≅ (Cⁿ, λ_{Cⁿ});
(F, λ_F) := (Bⁿ⁻¹, λ_{Cⁿ⁻¹}), which implies (F̂, Â_F) ≅ (Cⁿ⁻¹, λ_{Cⁿ⁻¹});
σ: Cⁿ⁻¹ × H_a → Cⁿ is the inclusion map.



Lemma (divisors are Liouville morphisms)

If (M, F, σ) is a stop, its divisor is a Liouville morphism from F to M.

Proof.

Divisors preserve Liouville forms and Liouville vector fields:

$$egin{aligned} D^*_\sigma \hat{\lambda}_M &= (\sigma \circ \iota_{\hat{F}})^* \hat{\lambda}_M & [ext{def. } D_\sigma] \ &= \iota^*_{\hat{F}} (\hat{\lambda}_F + \lambda_{\mathbb{C}} + \mathrm{d} f) & [\sigma ext{ is a stop}] \ &= \hat{\lambda}_F + \mathrm{d} (f \circ \iota_{\hat{F}}) & [\lambda_{\mathbb{C}}|_0 = 0]. \end{aligned}$$

For $\rho > 0$, $s \in (0, \frac{\pi}{2})$, define $A_s = \{re^{i\theta} \in \mathbb{C} \mid r > 0, |\theta| \le s\}$ and $S_{\rho,s} = \overline{D}_{\rho}^2 \cup A_s$, equipped with $\lambda_{\mathbb{C}} = \frac{1}{2}(x dy - y dx)$.

Definition (narrow stop, [Syl19, def. 2.5])

A **narrow stop** is given by the data (M, F, σ) , and is defined by replacing \mathbb{H}_{ρ} by $S_{\rho,s}$ in the definition of a stop.

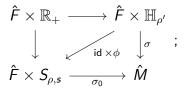
Remark (stops vs. narrow stops)

- Stops can be restricted to narrow stops.
- Strictly speaking, a narrow stop is not a stop.
- However, it's possible to construct a stop from a narrow stop.

Lemma (narrow stop \rightsquigarrow stop, [Syl19, lem. 2.4])

Let $((M, \lambda_M), (F, \lambda_F), \sigma_0)$ be a narrow stop with parameters ρ, s . Then, there exist $\phi \colon \mathbb{H}_{\rho'} \longrightarrow S_{\rho,s}$ a proper embedding and $g \colon \hat{M} \longrightarrow \mathbb{R}$ such that if we define $\sigma := \sigma_0 \circ (\operatorname{id} \times \phi)$ then we have that

The following diagram commutes:



supp g ⊂ σ(Ê × K), for K ⊂ ℍ_{ρ'} a compact neighbourhood of 0;
σ*(λ̂_M + dg) = λ̂_F + λ_C + d(f ∘ (id ×φ)).

Proof sketch.

The embedding ϕ is defined as $\phi = \phi_H^t$, for t big enough, where $H: \mathbb{C} \longrightarrow \mathbb{R}$ is a Hamiltonian which outside of a compact set is given by $r^2 \sin(\theta)$. Notice that the Hamiltonian flow of $r^2 \sin(\theta)$ preserves the Liouville form and it maps the real axis to the real axis. We choose t and ρ' so that $\phi = \phi_H^t$ maps $\mathbb{H}_{\rho'}$ to $S_{\rho,s}$. Then $\phi^* \lambda_{\mathbb{C}} = \lambda_{\mathbb{C}} - \mathrm{d}g'$, for $g': \mathbb{H}_{\rho'} \longrightarrow \mathbb{R}$ with compact support K a neighbourhood of 0. Define $g: \hat{M} \longrightarrow \mathbb{R}$ so that $\sigma^* g = g'$ and $\mathrm{supp} \, g \subset \sigma(\hat{F} \times K)$.

$$\sigma \colon \hat{F} \times \mathbb{H}_{\rho'} \xrightarrow{\operatorname{id}_{\hat{F}} \times \phi} \hat{F} \times S_{\rho,\sigma} \xrightarrow{\sigma_0} \hat{M}$$

 $\sigma_0^* g$

 $\hat{\lambda}_{F} + \lambda_{\mathbb{C}} + \mathrm{d}(f \circ (\mathrm{id}_{\hat{F}} \times \phi)) - \mathrm{d}g' \qquad \qquad \hat{\lambda}_{F} + \lambda_{\mathbb{C}} + \mathrm{d}f \qquad \qquad \hat{\lambda}_{M}$

 $\hat{\lambda}_{F} + \lambda_{\mathbb{C}} + \mathrm{d}(f \circ (\mathrm{id}_{\hat{F}} \times \phi)) \qquad \qquad \hat{\lambda}_{F} + \lambda_{\mathbb{C}} + \mathrm{d}f + \mathrm{d}\sigma_{0}^{*}g \qquad \qquad \hat{\lambda}_{M}' = \lambda_{M} + \mathrm{d}g$

g'

g

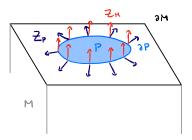
Liouville domains ([Syl19, §2.1])

- The category of Liouville domains
- Moser Lemmas
- Product of Liouville domains
- Stops ([Syl19, §2.2])
 Stops and narrow stops
 - Stops and Liouville pairs

A **Liouville pair** is going to be defined analogously to the **Weinstein pairs** of [Eli17]. We will now study the relation between stops and Liouville pairs. This relation will be given by some special functions on Liouville pairs which we will call **functions with Liouville graph**.

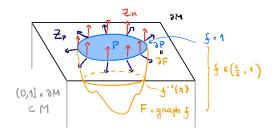
Definition (Liouville pair, adapted from [Eli17, §1 and 2])

A **Liouville pair** is a tuple (M, P) such that (M, λ) is a Liouville domain of dimension 2n and $(P, \lambda|_P) \subset \partial M$ is a Liouville domain of dimension 2n - 2.



Definition (func. w. Liouville graph, adapted from [Syl19, prop. 2.6]) If (M, P) is a Liouville pair, a **function with Liouville graph** on (M, P) is a smooth function $f: P \longrightarrow [1/2, 1]$ such that

- f < 1 on int P;
- **2** $f|_{\partial P} = 1;$
- Solution All r > 1/2 are regular values and $f^{-1}(r) \subset P$ is contact;
- $F := \operatorname{graph}(f) \subset M$ is a smooth submanifold such that $(Z_M)_p \in T_p F$ for all $p \in \partial P = \partial F$.



Proposition (Liouville pair defines stop, [Syl19, prop. 2.6])

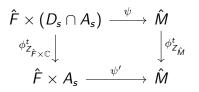
Let (M, P) be a Liouville pair and f be a function with Liouville graph on (M, P). Let F = graph f. Then, $(F, \lambda|_F)$ is a Liouville domain and there exists $\sigma \colon \hat{F} \times \mathbb{H}_{\rho} \longrightarrow \hat{M}$ such that $\sigma^*(\hat{\lambda}_M + dh) = \hat{\lambda}_F + \lambda_{\mathbb{C}} + df$ and $D_{\sigma} \colon \hat{F} \longrightarrow \hat{M}$ is induced from the inclusion $F \longrightarrow M$.

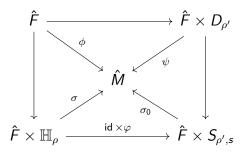
Proof sketch.

Show that $(F, \lambda|_F)$ is a Liouville domain. By functoriality of completions, $\iota: F \longrightarrow M$ defines $\phi: \hat{F} \longrightarrow \hat{M}$. It's possible to define an extension $\psi: \hat{F} \times D_{\rho'} \longrightarrow \hat{M}$ which is a symplectic embedding. Define $\theta := \lambda_{\hat{F} \times D_{\rho'}} - \psi^* \hat{\lambda}_M$, which is closed. Since $\theta|_{\hat{F}} = 0$, there exists an $h_0 \in C^{\infty}(D_{\rho'}, \mathbb{R})$ such that $\theta = dh_0$. Define $h = \psi_* h_0$ and $\hat{\lambda}'_M = \hat{\lambda}_M + dh$. Then, $\psi^* \hat{\lambda}'_M = \psi^* \hat{\lambda}_M + dh_0 = \lambda_{\hat{F} \times D_{\rho'}}$.

Proof sketch (cont.)

Define
$$\psi' \colon \hat{F} \times A_s \longrightarrow \hat{M}$$
 as in the diagram. Patch together ψ and ψ' to get $\sigma_0 \colon \hat{F} \times S_{\rho',s} \longrightarrow \hat{M}$. Use the reasoning of a previous lemma to make an embedding $\varphi \colon \mathbb{H}_{\rho} \longrightarrow S_{\rho,s}$.





Define σ so that the diagram on the left commutes. Then, σ is as desired.

28 / 29

References

- [CE12] Kai Cieliebak and Yakov Eliashberg. From Stein to Weinstein and Back, volume 59 of Colloquium Publications. American Mathematical Society, Providence, Rhode Island, December 2012.
- [Eli17] Yakov Eliashberg. Weinstein manifolds revisited. arXiv:1707.03442 [math], August 2017.
- [Syl19] Zachary Sylvan. On partially wrapped Fukaya categories. Journal of Topology, 12(2):372–441, June 2019.

Thank you for listening!